Andreev spectra and subgap bound states in multiband superconductors


Abstract in English

The theory of Andreev conductance is formulated for junctions involving normal metals (N) and multiband superconductors (S) and applied to the case of superconductors with nodeless extended $s_{pm}$-wave order parameter symmetry, as possibly realized in the recently discovered ferro pnictides. We find qualitative differences from tunneling into s-wave or d-wave superconductors that may help to identify such a state. First, interband interference leads to a suppression of Andreev reflection in the case of a highly transparent N/S interface and to a current deficit in the tunneling regime. Second, surface bound states may appear, both at zero and at non-zero energies. These effects do not occur in multiband superconductors without interband sign reversal, though the interference can still strongly modify the conductance spectra.

Download