حددت الإمكانية لتمديد النظام الكمي للمتطلبات النظرية للأنظمة العامة. يمكن القيام بذلك باستخدام الدلالات الكمية الناتجة من البنية المنطقية العميقة للنظام الكمي. يمكن ذلك بالنظر إلى العلاقة المفتوحة المنطقية بين المشاهد والنظام. سنظهر هنا كيف يكون النظر في قيم الحقيقة للمقولات الكمية في سياق مجموعات الغامضة أكثر فائدة للنظم. في النهاية، نقترح مثالا على التوازن الكمي الشكلي.
It is outlined the possibility to extend the quantum formalism in relation to the requirements of the general systems theory. It can be done by using a quantum semantics arising from the deep logical structure of quantum theory. It is so possible taking into account the logical openness relationship between observer and system. We are going to show how considering the truth-values of quantum propositions within the context of the fuzzy sets is here more useful for systemics . In conclusion we propose an example of formal quantum coherence.
In the first part of this work we apply Bohr (old or naive quantum atomic) theory for analysis of the remarkable electro-dynamical problem of magnetic monopoles. We reproduce formally exactly some basic elements of the Dirac magnetic monopoles theory, especially Dirac electric/magnetic charge quantization condition. It follows after application of Bohr theory at the system, simply called magnetic monopole atom, consisting of the practically standing, massive magnetic monopole as the nucleus and electron rotating stable around magnetic monopole under magnetic and electrostatic interactions. Also, in the second part of this work we suggest a simple solution of the classical electron electromagnetic mass problem.
Based on the Stueckelberg-Horwitz-Piron theory of covariant quantum mechanics on curved spacetime, we solved wave equation for a charged covariant harmonic oscillator in the background of charged static spherically symmetric black hole. Using Greens functions , we found asymptotic form for the wave function in the lowest mode (s-mode) and in higher moments. It has been proven that for s-wave, in a definite range of solid angles, the differential cross section depends effectively to the magnetic and electric charges of the black hole.
Renormalization group methods are applied to a scalar field within a finite, nonlocal quantum field theory formulated perturbatively in Euclidean momentum space. It is demonstrated that the triviality problem in scalar field theory, the Higgs boson mass hierarchy problem and the stability of the vacuum do not arise as issues in the theory. The scalar Higgs field has no Landau pole.
Inspired by classical (actual) Quantum Theory over $mathbb{C}$ and Modal Quantum Theory (MQT), which is a model of Quantum Theory over certain finite fields, we introduce General Quantum Theory as a Quantum Theory -- in the K{o}benhavn interpretation -- over general division rings with involution, in which the inner product is a $(sigma,1)$-Hermitian form $varphi$. This unites all known such approaches in one and the same theory, and we show that many of the known results such as no-cloning, no-deleting, quantum teleportation and super-dense quantum coding, which are known in classical Quantum Theory over $mathbb{C}$ and in some MQTs, hold for any General Quantum Theory. On the other hand, in many General Quantum Theories, a geometrical object which we call quantum kernel arises, which is invariant under the unitary group $mathbf{U}(V,varphi)$, and which carries the geometry of a so-called polar space. We use this object to construct new quantum (teleportation) coding schemes, which mix quantum theory with the geometry of the quantum kernel (and the action of the unitary group). We also show that in characteristic $0$, every General Quantum Theory over an algebraically closed field behaves like classical Quantum Theory over $mathbb{C}$ at many levels, and that all such theories share one model, which we pin down as the minimal model, which is countable and defined over $overline{mathbb{Q}}$. Moreover, to make the analogy with classical Quantum Theory even more striking, we show that Borns rule holds in any such theory. So all such theories are not modal at all. Finally, we obtain an extension theory for General Quantum Theories in characteristic $0$ which allows one to extend any such theory over algebraically closed fields (such as classical complex Quantum Theory) to larger theories in which a quantum kernel is present.
If there is a null gradient field in 1+3 dimensional space-time, we can set up a kind of light-cone coordinate system in the space-time. In such coordinate system, the metric takes a simple form, which is much helpful for simplifying and solving the Einsteins field equation. This light-cone coordinate system has wonderful properties and has been widely used in astrophysics to calculate parameters. In this paper, we give a detailed discussion for the structure of space-time with light-cone coordinate system. We derive the conditions for existence of such coordinate system, and show how to construct the light-cone coordinate system from usual ones, then explain their geometrical and physical meanings by examples.