Do you want to publish a course? Click here

A Spectral Theorem for Imprimitivity C*-bimodules

265   0   0.0 ( 0 )
 Added by Paolo Bertozzini -
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

After recalling in detail some basic definitions on Hilbert C*-bimodules, Morita equivalence and imprimitivity, we discuss a spectral reconstruction theorem for imprimitivity Hilbert C*-bimodules over commutative unital C*-algebras and consider some of its applications in the theory of commutative full C*-categories.



rate research

Read More

Imprimitivity theorems provide a fundamental tool for studying the representation theory and structure of crossed-product C*-algebras. In this work, we show that the Imprimitivity Theorem for induced algebras, Greens Imprimitivity Theorem for actions of groups, and Mansfields Imprimitivity Theorem for coactions of groups can all be viewed as natural equivalences between various crossed-product functors among certain equivariant categories. The categories involved have C*-algebras with actions or coactions (or both) of a fixed locally compact group G as their objects, and equivariant equivalence classes of right-Hilbert bimodules as their morphisms. Composition is given by the balanced tensor product of bimodules. The functors involved arise from taking crossed products; restricting, inflating, and decomposing actions and coactions; inducing actions; and various combinations of these. Several applications of this categorical approach are also presented, including some intriguing relationships between the Green and Mansfield bimodules, and between restriction and induction of representations.
We call a von Neumann algebra with finite dimensional center a multifactor. We introduce an invariant of bimodules over $rm II_1$ multifactors that we call modular distortion, and use it to formulate two classification results. We first classify finite depth finite index connected hyperfinite $rm II_1$ multifactor inclusions $Asubset B$ in terms of the standard invariant (a unitary planar algebra), together with the restriction to $A$ of the unique Markov trace on $B$. The latter determines the modular distortion of the associated bimodule. Three crucial ingredients are Popas uniqueness theorem for such inclusions which are also homogeneous, for which the standard invariant is a complete invariant, a generalized version of the Ocneanu Compactness Theorem, and the notion of Morita equivalence for inclusions. Second, we classify fully faithful representations of unitary multifusion categories into bimodules over hyperfinite $rm II_1$ multifactors in terms of the modular distortion. Every possible distortion arises from a representation, and we characterize the proper subset of distortions that arise from connected $rm II_1$ multifactor inclusions.
We present a duality between the category of compact Riemannian spin manifolds (equipped with a given spin bundle and charge conjugation) with isometries as morphisms and a suitable metric category of spectral triples over commutative pre-C*-algebras. We also construct an embedding of a quotient of the category of spectral triples introduced in arXiv:math/0502583v1 into the latter metric category. Finally we discuss a further related duality in the case of orientation and spin-preserving maps between manifolds of fixed dimension.
C*-categories are essentially norm-closed *-categories of bounded linear operators between Hilbert spaces. The purpose of this work is to identify suitable axioms defining Krein C*-categories, i.e. those categories that play the role of C*-categories whenever Hilbert spaces are replaced by more general indefinite inner product Krein spaces, and provide some basic examples. Finally we provide a Gelfand-Naimark representation theorem for Krein C*-algebras and Krein C*-categories.
106 - Nigel Higson , Qijun Tan 2016
We give a geometric proof of a theorem of Weyl on the continuous part of the spectrum of Sturm-Liouville operators on the half-line with asymptotically constant coefficients. Earlier proofs due to Weyl and Kodaira depend on special features of Greens functions for linear ordinary differential operators; ours might offer better prospects for generalization to higher dimensions, as required for example in noncommutative harmonic analysis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا