Do you want to publish a course? Click here

Collapse Barriers and Halo Abundance: Testing the Excursion Set Ansatz

474   0   0.0 ( 0 )
 Added by Brant Robertson
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Our heuristic understanding of the abundance of dark matter halos centers around the concept of a density threshold, or barrier, for gravitational collapse. If one adopts the ansatz that regions of the linearly evolved density field smoothed on mass scale M with an overdensity that exceeds the barrier will undergo gravitational collapse into halos of mass M, the corresponding abundance of such halos can be estimated simply as a fraction of the mass density satisfying the collapse criterion divided by the mass M. The key ingredient of this ansatz is therefore the functional form of the collapse barrier as a function of mass M or, equivalently, of the variance sigma^2(M). Several such barriers based on the spherical, Zeldovich, and ellipsoidal collapse models have been extensively discussed. Using large scale cosmological simulations, we show that the relation between the linear overdensity and the mass variance for regions that collapse to form halos by the present epoch resembles expectations from dynamical models of ellipsoidal collapse. However, we also show that using such a collapse barrier with the excursion set ansatz predicts a halo mass function inconsistent with that measured directly in cosmological simulations. This inconsistency demonstrates a failure of the excursion set ansatz as a physical model for halo collapse. We discuss implications of our results for understanding the collapse epoch for halos as a function of mass, and avenues for improving consistency between analytical models for the collapse epoch and the results of cosmological simulations.



rate research

Read More

The simplest stochastic halo formation models assume that the traceless part of the shear field acts to increase the initial overdensity (or decrease the underdensity) that a protohalo (or protovoid) must have if it is to form by the present time. Equivalently, it is the difference between the overdensity and (the square root of the) shear that must be larger than a threshold value. To estimate the effect this has on halo abundances using the excursion set approach, we must solve for the first crossing distribution of a barrier of constant height by the random walks associated with the difference, which is now (even for Gaussian initial conditions) a non-Gaussian variate. The correlation properties of such non-Gaussian walks are inherited from those of the density and the shear, and, since they are independent processes, the solution is in fact remarkably simple. We show that this provides an easy way to understand why earlier heuristic arguments about the nature of the solution worked so well. In addition to modelling halos and voids, this potentially simplifies models of the abundance and spatial distribution of filaments and sheets in the cosmic web.
We use the Excursion Set formalism to compute the properties of the halo mass distribution for a stochastic barrier model which encapsulates the main features of the ellipsoidal collapse of dark matter halos. Non-markovian corrections due to the sharp filtering of the linear density field in real space are computed with the path-integral technique introduced by Maggiore & Riotto (2010). Here, we provide a detailed derivation of the results presented in Corasaniti & Achitouv (2011) and extend the mass function analysis to higher redshift. We also derive an analytical expression for the linear halo bias. We find the analytically derived mass function to be in remarkable agreement with N-body simulation data from Tinker et al. (2008) with differences smaller than ~5% over the range of mass probed by the simulations. The excursion set solution from Monte Carlo generated random walks shows the same level of agreement, thus confirming the validity of the path-integral approach for the barrier model considered here. Similarly the analysis of the linear halo bias shows deviations no greater than 20%. Overall these results indicate that the Excursion Set formalism in combination with a realistic modeling of the conditions of halo collapse can provide an accurate description of the halo mass distribution.
The merger and accretion probabilities of dark matter halos have so far only been calculated for an infinitesimal time interval. This means that a Monte-Carlo simulation with very small time steps is necessary to find the merger history of a parent halo. In this paper we use the random walk formalism to find the merger and accretion probabilities of halos for a finite time interval. Specifically, we find the number density of halos at an early redshift that will become part of a halo with a specified final mass at a later redshift, given that they underwent $n$ major mergers, $n=0,1,2,...$ . We reduce the problem into an integral equation which we then solve numerically. To ensure the consistency of our formalism we compare the results with Monte-Carlo simulations and find very good agreement. Though we have done our calculation assuming a flat barrier, the more general case can easily be handled using our method. This derivation of finite time merger and accretion probabilities can be used to make more efficient merger trees or implemented directly into analytical models of structure formation and evolution.
The excursion set model provides a convenient theoretical framework to derive dark matter halo abundances. This paper generalizes the model by introducing a more realistic merging and collapse process. A new parameter regulates the influence of the environment and thus the coherence (non-Markovianity) of the merging and the collapse of individual mass shells. The model mass function also includes the effects of an ellipsoidal collapse. Analytic approximations of the halo mass function are derived for scale-invariant power spectra with the slopes $n=0,-1,-2$. The $n=-2$ mass function can be compared with the results obtained from the `Hubble volume simulations. A significant detection of non-Markovian effects is found for an assumed accuracy of the simulated mass function of 10%.
144 - Michele Maggiore 2009
In excursion set theory the computation of the halo mass function is mapped into a first-passage time process in the presence of a barrier, which in the spherical collapse model is a constant and in the ellipsoidal collapse model is a fixed function of the variance of the smoothed density field. However, N-body simulations show that dark matter halos grow through a mixture of smooth accretion, violent encounters and fragmentations, and modeling halo collapse as spherical, or even as ellipsoidal, is a significant oversimplification. We propose that some of the physical complications inherent to a realistic description of halo formation can be included in the excursion set theory framework, at least at an effective level, by taking into account that the critical value for collapse is not a fixed constant $delta_c$, as in the spherical collapse model, nor a fixed function of the variance $sigma$ of the smoothed density field, as in the ellipsoidal collapse model, but rather is itself a stochastic variable, whose scatter reflects a number of complicated aspects of the underlying dynamics. Solving the first-passage time problem in the presence of a diffusing barrier we find that the exponential factor in the Press-Schechter mass function changes from $exp{-delta_c^2/2sigma^2}$ to $exp{-adelta_c^2/2sigma^2}$, where $a=1/(1+D_B)$ and $D_B$ is the diffusion coefficient of the barrier. The numerical value of $D_B$, and therefore the corresponding value of $a$, depends among other things on the algorithm used for identifying halos. We discuss the physical origin of the stochasticity of the barrier and we compare with the mass function found in N-body simulations, for the same halo definition.[Abridged]
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا