Computational modeling of collective human behavior: Example of financial markets


Abstract in English

We discuss how minimal financial market models can be constructed by bridging the gap between two existing, but incomplete, market models: a model in which a population of virtual traders make decisions based on common global information but lack local information from their social network, and a model in which the traders form a dynamically evolving social network but lack any decision-making based on global information. We show that a suitable combination of these two models -- in particular, a population of virtual traders with access to both global and local information -- produces results for the price return distribution which are closer to the reported stylized facts. We believe that this type of model can be applied across a wide range of systems in which collective human activity is observed.

Download