No Arabic abstract
We discuss how minimal financial market models can be constructed by bridging the gap between two existing, but incomplete, market models: a model in which a population of virtual traders make decisions based on common global information but lack local information from their social network, and a model in which the traders form a dynamically evolving social network but lack any decision-making based on global information. We show that a suitable combination of these two models -- in particular, a population of virtual traders with access to both global and local information -- produces results for the price return distribution which are closer to the reported stylized facts. We believe that this type of model can be applied across a wide range of systems in which collective human activity is observed.
We consider models of financial markets in which all parties involved find incentives to participate. Strategies are evaluated directly by their virtual wealths. By tuning the price sensitivity and market impact, a phase diagram with several attractor behaviors resembling those of real markets emerge, reflecting the roles played by the arbitrageurs and trendsetters, and including a phase with irregular price trends and positive sums. The positive-sumness of the players wealths provides participation incentives for them. Evolution and the bid-ask spread provide mechanisms for the gain in wealth of both the players and market-makers. New players survive in the market if the evolutionary rate is sufficiently slow. We test the applicability of the model on real Hang Seng Index data over 20 years. Comparisons with other models show that our model has a superior average performance when applied to real financial data.
We present results on simulations of a stock market with heterogeneous, cumulative information setup. We find a non-monotonic behaviour of traders returns as a function of their information level. Particularly, the average informed agents underperform random traders; only the most informed agents are able to beat the market. We also study the effect of a strategy updating mechanism, when traders have the possibility of using other pieces of information than the fundamental value. These results corroborate the latter ones: it is only for the most informed player that it is rewarding to stay fundamentalist. The simulations reproduce some stylized facts of tick-by-tick stock-exchange data and globally show informational efficiency.
We propose a dynamical theory of market liquidity that predicts that the average supply/demand profile is V-shaped and {it vanishes} around the current price. This result is generic, and only relies on mild assumptions about the order flow and on the fact that prices are (to a first approximation) diffusive. This naturally accounts for two striking stylized facts: first, large metaorders have to be fragmented in order to be digested by the liquidity funnel, leading to long-memory in the sign of the order flow. Second, the anomalously small local liquidity induces a breakdown of linear response and a diverging impact of small orders, explaining the square-root impact law, for which we provide additional empirical support. Finally, we test our arguments quantitatively using a numerical model of order flow based on the same minimal ingredients.
A dynamic herding model with interactions of trading volumes is introduced. At time $t$, an agent trades with a probability, which depends on the ratio of the total trading volume at time $t-1$ to its own trading volume at its last trade. The price return is determined by the volume imbalance and number of trades. The model successfully reproduces the power-law distributions of the trading volume, number of trades and price return, and their relations. Moreover, the generated time series are long-range correlated. We demonstrate that the results are rather robust, and do not depend on the particular form of the trading probability.
We introduce a minimal Agent Based Model for financial markets to understand the nature and Self-Organization of the Stylized Facts. The model is minimal in the sense that we try to identify the essential ingredients to reproduce the main most important deviations of price time series from a Random Walk behavior. We focus on four essential ingredients: fundamentalist agents which tend to stabilize the market; chartist agents which induce destabilization; analysis of price behavior for the two strategies; herding behavior which governs the possibility of changing strategy. Bubbles and crashes correspond to situations dominated by chartists, while fundamentalists provide a long time stability (on average). The Stylized Facts are shown to correspond to an intermittent behavior which occurs only for a finite value of the number of agents N. Therefore they correspond to finite size effect which, however, can occur at different time scales. We propose a new mechanism for the Self-Organization of this state which is linked to the existence of a threshold for the agents to be active or not active. The feedback between price fluctuations and number of active agents represent a crucial element for this state of Self-Organized-Intermittency. The model can be easily generalized to consider more realistic variants.