Do you want to publish a course? Click here

Effective three-body interactions of neutral bosons in optical lattices

160   0   0.0 ( 0 )
 Added by Philip R. Johnson
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that there are effective three- and higher-body interactions generated by the two-body collisions of atoms confined in the lowest vibrational states of a 3D optical lattice. The collapse and revival dynamics of approximate coherent states loaded into a lattice are a particularly sensitive probe of these higher-body interactions; the visibility of interference fringes depend on both two-, three-, and higher-body energy scales, and these produce an initial dephasing that can help explain the surprisingly rapid decay of revivals seen in experiments. If inhomogeneities in the lattice system are sufficiently reduced, longer timescale partial and nearly full revivals will be visible. Using Feshbach resonances or control of the lattice potential it is possible to tune the effective higher-body interactions and simulate effective field theories in optical lattices.



rate research

Read More

We calculate the renormalized effective 2-, 3-, and 4-body interactions for N neutral ultracold bosons in the ground state of an isotropic harmonic trap, assuming 2-body interactions modeled with the combination of a zero-range and energy-dependent pseudopotential. We work to third-order in the scattering length a defined at zero collision energy, which is necessary to obtain both the leading-order effective 4-body interaction and consistently include finite-range corrections for realistic 2-body interactions. The leading-order, effective 3- and 4-body interaction energies are U3 = -(0.85576...)(a/l)^2 + 2.7921(1)(a/l)^3 + O[(a/l)^4] and U4 = +(2.43317...)(a/l)^3 + O[(al)^4], where w and l are the harmonic oscillator frequency and length, respectively, and energies are in units of hbar*w. The one-standard deviation error 0.0001 for the third-order coefficient in U3 is due to numerical uncertainty in estimating a slowly converging sum; the other two coefficients are either analytically or numerically exact. The effective 3- and 4-body interactions can play an important role in the dynamics of tightly confined and strongly correlated systems. We also performed numerical simulations for a finite-range boson-boson potential, and it was comparison to the zero-range predictions which revealed that finite-range effects must be taken into account for a realistic third-order treatment. In particular, we show that the energy-dependent pseudopotential accurately captures, through third order, the finite-range physics, and in combination with the multi-body effective interactions gives excellent agreement with the numerical simulations, validating our theoretical analysis and predictions.
In this paper, the quantum phase transition between superfluid state and Mott-insulator state is studied based on an extended Bose-Hubbard model with two- and three-body on-site interactions. By employing the mean-field approximation we find the extension of the insulating lobes and the existence of a fixed point in three dimensional phase space. We investigate the link between experimental parameters and theoretical variables. The possibility to obverse our results through some experimental effects in optically trapped Bose-Einstein Condensates(BEC) is also discussed.
170 - M. Cramer , A. Bernard , N. Fabbri 2013
Entanglement is a fundamental resource for quantum information processing, occurring naturally in many-body systems at low temperatures. The presence of entanglement and, in particular, its scaling with the size of system partitions underlies the complexity of quantum many-body states. The quantitative estimation of entanglement in many-body systems represents a major challenge as it requires either full state tomography, scaling exponentially in the system size, or the assumption of unverified system characteristics such as its Hamiltonian or temperature. Here we adopt recently developed approaches for the determination of rigorous lower entanglement bounds from readily accessible measurements and apply them in an experiment of ultracold interacting bosons in optical lattices of approximately $10^5$ sites. We then study the behaviour of spatial entanglement between the sites when crossing the superfluid-Mott insulator transition and when varying temperature. This constitutes the first rigorous experimental large-scale entanglement quantification in a scalable quantum simulator.
We investigate the formation of trimers in an infinite one-dimensional lattice model of hard-core particles with single-particle hopping $t$ and and nearest-neighbour two-body $U$ and three-body $V$ interactions of relevance to Rydberg atoms and polar molecules. For sufficiently attractive $Uleq-2t$ and positive $V>0$ a large trimer is stabilized, which persists as $Vrightarrow infty$, while both attractive $Uleq0$ and $Vleq0$ bind a small trimer. The excited state above this small trimer is also bound and has a large extent; its behavior as $Vrightarrow -infty$ resembles that of the large ground-state trimer. These large bound states appear to admit a continuum description. Furthermore, we find that in the limit $V>>t$, $U<-2t$ the bound-state behavior qualitatively evolves with larger $|U|$ from a state described by the scattering of three far separated particles to a state of a compact dimer scattering with a single particle.
171 - T.C. Luu , S. Bogner , W.C. Haxton 2004
The three-body energy-dependent effective interaction given by the Bloch-Horowitz (BH) equation is evaluated for various shell-model oscillator spaces. The results are applied to the test case of the three-body problem (triton and He3), where it is shown that the interaction reproduces the exact binding energy, regardless of the parameterization (number of oscillator quanta or value of the oscillator parameter b) of the low-energy included space. We demonstrate a non-perturbative technique for summing the excluded-space three-body ladder diagrams, but also show that accurate results can be obtained perturbatively by iterating the two-body ladders. We examine the evolution of the effective two-body and induced three-body terms as b and the size of the included space Lambda are varied, including the case of a single included shell, Lambda hw=0 hw. For typical ranges of b, the induced effective three-body interaction, essential for giving the exact three-body binding, is found to contribute ~10% to the binding energy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا