Do you want to publish a course? Click here

The impact of TP-AGB stars on hierarchical galaxy formation models

84   0   0.0 ( 0 )
 Added by Chiara Tonini
 Publication date 2009
  fields Physics
and research's language is English
 Authors Chiara Tonini




Ask ChatGPT about the research

The spectro-photometric properties of galaxies in galaxy formation models are obtained by combining the predicted history of star formation and mass accretion with the physics of stellar evolution through stellar population models. In the recent literature, significant differences have emerged regarding the implementation of the Thermally-Pulsing Asymptotic Giant Branch phase of stellar evolution. The emission in the TP-AGB phase dominates the bolometric and near-IR spectrum of intermediate-age (~1 Gyr) stellar populations, hence it is crucial for the correct modeling of the galaxy luminosities and colours. In this paper for the first time, we incorporate a full prescription of the TP-AGB phase in a semi-analytic model of galaxy formation. We find that the inclusion of the TP-AGB in the model spectra dramatically alters the predicted colour-magnitude relation and its evolution with redshift. When the TP-AGB phase is active, the rest-frame V-K galaxy colours are redder by almost 2 magnitudes in the redshift range z~2-3 and by 1 magnitude at z~1. Very red colours are produced in disk galaxies, so that the V-K colour distributions of disk and spheroids are virtually undistinguishable at low redshifts. We also find that the galaxy K-band emission is more than 1 magnitude higher in the range z~1-3. This may alleviate the difficulties met by the hierarchical clustering scenario in predicting the red galaxy population at high redshifts. The comparison between simulations and observations have to be revisited in the light of our results.

rate research

Read More

126 - Stefano Zibetti 2012
We present new spectro-photometric NIR observations of 16 post-starburst galaxies especially designed to test for the presence of strong carbon features of thermally pulsing AGB (TP-AGB) stars, as predicted by recent models of stellar population synthesis. Selection based on clear spectroscopic optical features indicating the strong predominance of stellar populations with ages between 0.5 and 1.5 Gyr and redshift around 0.2 allows us to probe the spectral region that is most affected by the carbon features of TP-AGB stars (unaccessible from the ground for z~0 galaxies) in the evolutionary phase when their impact on the IR luminosity is maximum. Nevertheless, none of the observed galaxies display such features. Moreover the NIR fluxes relative to optical are consistent with those predicted by the original Bruzual & Charlot (2003) models, where the impact of TP-AGB stars is much lower than has been recently advocated.
72 - N. Langer 1999
We present the first evolutionary models of intermediate mass stars up to their thermal pulses which include effects of rotation on the stellar structure as well as rotationally induced mixing of chemical species and angular momentum. We find a significant angular momentum transport from the core to the hydrogen-rich envelope and obtain a white dwarf rotation rate comparable to current observational upper limits of 50 km/s. Large angular momentum gradients at the bottom of the convective envelope and the tip of the pulse driven convective shell are shown to produce marked chemical mixing between the proton-rich and the 12C-rich layers during the so called third dredge-up. This leads to a subsequent production of 13C which is followed by neutron production through 13C(alpha,n) in radiative layers in between thermal pulses. Although uncertainties in the efficiency of rotational mixing processes persist, we conclude that rotation is capable of producing a 13C-rich layer as required for the occurrence of the s-process in TP-AGB stars.
We present new synthetic models of the TP-AGB evolution. They are computed for 7 values of initial metal content (Z from 0.0001 to 0.03) and for initial masses between 0.5 and 5.0 Msun, thus extending the low- and intermediate-mass tracks of Girardi et al. (2000) until the beginning of the post-AGB phase. The calculations are performed by means of a synthetic code that incorporates many recent improvements, among which we mention: (1) the use of detailed and revised analytical relations to describe the evolution of quiescent luminosity, inter-pulse period, third dredge-up, hot bottom burning, pulse cycle luminosity variations, etc.; (2) the use of variable molecular opacities -- i.e. opacities consistent with the changing photospheric chemical composition -- in the integration of a complete envelope model, instead of the standard choice of scaled-solar opacities; (3) the use of formalisms for the mass-loss rates derived from pulsating dust-driven wind models of C- and O-rich AGB stars; and (4) the switching of pulsation modes between the first overtone and the fundamental one along the evolution, which has consequences in terms of the history of mass loss. It follows that, in addition to the time evolution on the HR diagram, the new models predict in a consistent fashion also variations in surface chemical compositions, pulsation modes and periods, and mass-loss rates. The onset and efficiency of the third dredge-up process are calibrated in order to reproduce basic observables like the carbon star luminosity functions in the Magellanic Clouds, and TP-AGB lifetimes (star counts) in Magellanic Cloud clusters. Forthcoming papers will present the theoretical isochrones and chemical yields derived from these tracks, and additional tests performed with the aid of a complete population synthesis code.
We examine the effect of using different halo finders and merger tree building algorithms on galaxy properties predicted using the GALFORM semi-analytical model run on a high resolution, large volume dark matter simulation. The halo finders/tree builders HBT, ROCKSTAR, SUBFIND and VELOCIRAPTOR differ in their definitions of halo mass, on whether only spatial or phase-space information is used, and in how they distinguish satellite and main haloes; all of these features have some impact on the model galaxies, even after the trees are post-processed and homogenised by GALFORM. The stellar mass function is insensitive to the halo and merger tree finder adopted. However, we find that the number of central and satellite galaxies in GALFORM does depend slightly on the halo finder/tree builder. The number of galaxies without resolved subhaloes depends strongly on the tree builder, with VELOCIRAPTOR, a phase-space finder, showing the largest population of such galaxies. The distributions of stellar masses, cold and hot gas masses, and star formation rates agree well between different halo finders/tree builders. However, because VELOCIRAPTOR has more early progenitor haloes, with these trees GALFORM produces slightly higher star formation rate densities at high redshift, smaller galaxy sizes, and larger stellar masses for the spheroid component. Since in all cases these differences are small we conclude that, when all of the trees are processed so that the main progenitor mass increases monotonically, the predicted GALFORM galaxy populations are stable and consistent for these four halo finders/tree builders.
(Abridged) In the recent controversy about the role of TP-AGB stars in evolutionary population synthesis (EPS) models of galaxies, one particular aspect is puzzling: TP-AGB models aimed at reproducing the lifetimes and integrated fluxes of the TP-AGB phase in Magellanic Cloud (MC) clusters, when incorporated into EPS models, are found to overestimate the TP-AGB contribution in resolved star counts and integrated spectra of galaxies. In this paper, we call attention to a particular evolutionary aspect that in all probability is the main cause of this conundrum. As soon as stellar populations intercept the ages at which RGB stars first appear, a sudden change in the lifetime of the core He-burning phase causes a temporary boost in the production rate of subsequent evolutionary phases, including the TP-AGB. For a timespan of about 0.1 Gyr, triple TP-AGB branches develop at slightly different initial masses, causing their frequency and contribution to the integrated luminosity of the stellar population to increase by a factor of 2. The boost occurs just in the proximity of the expected peak in the TP-AGB lifetimes, and for ages of 1.6 Gyr. Coincidently, this relatively narrow age interval happens to contain the few very massive MC clusters that host most of the TP-AGB stars used to constrain stellar evolution and EPS models. This concomitance makes the AGB-boosting particularly insidious in the context of present EPS models. The effect brings about three main consequences. (1) Present estimates of the TP-AGB contribution to the integrated light of galaxies derived from MC clusters, are biased towards too large values. (2) The relative TP-AGB contribution of single-burst populations falling in this critical age range cannot be accurately derived by the fuel consumption theorem. (3) A careful revision of AGB star populations in intermediate-age MC clusters is urgently demanded.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا