Do you want to publish a course? Click here

Characterization of the HD 17156 planetary system

507   0   0.0 ( 0 )
 Added by Mauro Barbieri
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

AIMS : To improve the parameters of the HD 17156 system (peculiar due to the eccentric and long orbital period of its transiting planet) and constrain the presence of stellar companions. METHODS : Photometric data were acquired for 4 transits, and high precision radial velocity measurements were simultaneously acquired with SARG@TNG for one transit. The template spectra of HD 17156 was used to derive effective temperature, gravity, and metallicity. A fit of the photometric and spectroscopic data was performed to measure the stellar and planetary radii, and the spin-orbit alignment. Planet orbital elements and ephemeris were derived from the fit. Near infrared adaptive optic images was acquired with ADOPT@TNG. RESULTS: We have found that the star has a radius of R_S = 1.43+/-0.03 R_sun and the planet R_P =1.02+/-0.08 R_jup. The transit ephemeris is T_c = 2454756.73134+/-0.00020+N*21.21663+/-0.00045 BJD. The analysis of the Rossiter-Mclaughlin effect shows that the system is spin orbit aligned with an angle lambda = 4.8 +/- 5.3 deg. The analysis of high resolution images has not revealed any stellar companion with projected separation between 150 and 1000 AU from HD 17156.



rate research

Read More

Multi-planet systems around evolved stars are of interest to trace the evolution of planetary systems into the post-main sequence phase. HD 47366, an evolved intermediate mass star, hosts two giant planets on moderately eccentric orbits. Previous analysis of the planetary system has revealed that it is dynamically unstable on timescales much shorter than the stellar age unless the planets are trapped in mutual 2:1 mean motion resonance, inconsistent with the orbital solution presented in cite{2016Sato} (hereafter: S16), or are moving on mutually retrograde orbits. Here we examine the orbital stability of the system presented in S16 using the $n$-body code {sc Mercury} over a broad range of $a$--$e$ parameter space consistent with the observed radial velocities, assuming they are on co-planar orbits. Our analysis confirms that the system as proposed in S16 is not dynamically stable. We therefore undertake a thorough re-analysis of the available observational data for the HD 47366 system, through the Levenberg-Marquardt technique and confirmed by MCMC Bayesian methodology. Our re-analysis reveals an alternative, lower eccentricity fit that is vastly preferred over the highly eccentric orbital solution obtained from the nominal best-fit presented in S16. The new, improved dynamical simulation solution reveals the reduced eccentricity of the planetary orbits, shifting the HD 47366 system into the edge of a broad stability region, increasing our confidence that the planets are all that they seem to be. Our rigorous examination of the dynamical stability of HD 47366 stands as a cautionary tale in finding the global best-fit model.
The hot Jupiter HD 217107 b was one of the first exoplanets detected using the radial velocity (RV) method, originally reported in the literature in 1999. Today, precise RV measurements of this system span more than 20 years, and there is clear evidence for a longer-period companion, HD 217107 c. Interestingly, both the short-period planet ($P_mathrm{b}sim7.13$ d) and long-period planet ($P_mathrm{c}sim5059$ d) have significantly eccentric orbits ($e_mathrm{b}sim0.13$ and $e_mathrm{c}sim0.40$). We present 42 additional RV measurements of this system obtained with the MINERVA telescope array and carry out a joint analysis with previously published RV measurements from four different facilities. We confirm and refine the previously reported orbit of the long-period companion. HD 217107 b is one of a relatively small number of hot Jupiters with an eccentric orbit, opening up the possibility of detecting precession of the planetary orbit due to General Relativistic effects and perturbations from other planets in the system. In this case, the argument of periastron, $omega$, is predicted to change at the level of $sim$0.8$^circ$ century$^{-1}$. Despite the long time baseline of our observations and the high quality of the RV measurements, we are only able to constrain the precession to be $dot{omega}<65.9^circ$ century$^{-1}$. We discuss the limitations of detecting the subtle effects of precession in exoplanet orbits using RV data.
The bright star $pi$ Men was chosen as the first target for a radial velocity follow-up to test the performance of ESPRESSO, the new high-resolution spectrograph at the ESOs Very-Large Telescope (VLT). The star hosts a multi-planet system (a transiting 4 M$_oplus$ planet at $sim$0.07 au, and a sub-stellar companion on a $sim$2100-day eccentric orbit) which is particularly appealing for a precise multi-technique characterization. With the new ESPRESSO observations, that cover a time span of 200 days, we aim to improve the precision and accuracy of the planet parameters and search for additional low-mass companions. We also take advantage of new photometric transits of $pi$ Men c observed by TESS over a time span that overlaps with that of the ESPRESSO follow-up campaign. We analyse the enlarged spectroscopic and photometric datasets and compare the results to those in the literature. We further characterize the system by means of absolute astrometry with Hipparcos and Gaia. We used the spectra of ESPRESSO for an independent determination of the stellar fundamental parameters. We present a precise characterization of the planetary system around $pi$ Men. The ESPRESSO radial velocities alone (with typical uncertainty of 10 cm/s) allow for a precise retrieval of the Doppler signal induced by $pi$ Men c. The residuals show an RMS of 1.2 m/s, and we can exclude companions with a minimum mass less than $sim$2 M$_oplus$ within the orbit of $pi$ Men c). We improve the ephemeris of $pi$ Men c using 18 additional TESS transits, and in combination with the astrometric measurements, we determine the inclination of the orbital plane of $pi$ Men b with high precision ($i_{b}=45.8^{+1.4}_{-1.1}$ deg). This leads to the precise measurement of its absolute mass $m_{b}=14.1^{+0.5}_{-0.4}$ M$_{Jup}$, and shows that the planetary orbital planes are highly misaligned.
HD 21749 is a bright ($V=8.1$ mag) K dwarf at 16 pc known to host an inner terrestrial planet HD 21749c as well as an outer sub-Neptune HD 21749b, both delivered by TESS. Follow-up spectroscopic observations measured the mass of HD 21749b to be $22.7pm2.2 M_{oplus}$ with a density of $7.0^{+1.6}_{-1.3}$ g~cm$^{-3}$, making it one of the densest sub-Neptunes. However, the mass measurement was suspected to be influenced by stellar rotation. Here we present new high-cadence PFS RV data to disentangle the stellar activity signal from the planetary signal. We find that HD 21749 has a similar rotational timescale as the planets orbital period, and the amplitude of the planetary orbital RV signal is estimated to be similar to that of the stellar activity signal. We perform Gaussian Process (GP) regression on the photometry and RVs from HARPS and PFS to model the stellar activity signal. Our new models reveal that HD 21749b has a radius of $2.86pm0.20 R_{oplus}$, an orbital period of $35.6133pm0.0005$ d with a mass of $M_{b}=20.0pm2.7 M_{oplus}$ and a density of $4.8^{+2.0}_{-1.4}$ g~cm$^{-3}$ on an eccentric orbit with $e=0.16pm0.06$, which is consistent with the most recent values published for this system. HD 21749c has an orbital period of $7.7902pm0.0006$ d, a radius of $1.13pm0.10 R_{oplus}$, and a 3$sigma$ mass upper limit of $3.5 M_{oplus}$. Our Monte Carlo simulations confirm that without properly taking stellar activity signals into account, the mass measurement of HD 21749b is likely to arrive at a significantly underestimated error bar.
The large number of close-in Jupiter-size exoplanets prompts the question whether star-planet interaction (SPI) effects can be detected. We focused our attention on the system HD 17156, having a Jupiter-mass planet in a very eccentric orbit. Here we present results of the XMM-Newton observations and of a five months coordinated optical campaign with the HARPS-N spectrograph. We observed HD 17156 with XMM-Newton when the planet was approaching the apoastron and then at the following periastron passage, quasi simultaneously with HARPS-N. We obtained a clear ($approx 5.5sigma$) X-ray detection only at the periastron visit, accompanied by a significant increase of the $R_{rm HK}$ chromospheric index. We discuss two possible scenarios for the activity enhancement: magnetic reconnection and flaring or accretion onto the star of material tidally stripped from the planet. In any case, this is possibly the first evidence of a magnetic SPI effect caught in action.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا