No Arabic abstract
We transform the oscillator algebra with kappa-deformed multiplication rule, proposed in [1],[2], into the oscillator algebra with kappa-deformed flip operator and standard multiplication. We recall that the kappa-multiplication of the kappa-oscillators puts them off-shell. We study the explicit forms of modified mass-shell conditions in both formulations: with kappa-multiplication and with kappa-flip operation. On the example of kappa-deformed 2-particle states we study the clustered nonfactorizable form of the kappa-deformed multiparticle states. We argue that the kappa-deformed star product of two free fields leads in similar way to a nonfactorizable kappa-deformed bilocal field. We conclude with general remarks concerning the kappa-deformed n-particle clusters and kappa-deformed star product of n fields.
We describe the deformed E.T. quantization rules for kappa-deformed free quantum fields, and relate these rules with the kappa-deformed algebra of field oscillators.
The $(4+4)$-dimensional $kappa$-deformed quantum phase space as well as its $(10+10)$-dimensional covariant extension by the Lorentz sector can be described as Heisenberg doubles: the $(10+10)$-dimensional quantum phase space is the double of $D=4$ $kappa$-deformed Poincare Hopf algebra $mathbb{H}$ and the standard $(4+4)$-dimensional space is its subalgebra generated by $kappa$-Minkowski coordinates $hat{x}_mu$ and corresponding commuting momenta $hat{p}_mu$. Every Heisenberg double appears as the total algebra of a Hopf algebroid over a base algebra which is in our case the coordinate sector. We exhibit the details of this structure, namely the corresponding right bialgebroid and the antipode map. We rely on algebraic methods of calculation in Majid-Ruegg bicrossproduct basis. The target map is derived from a formula by J-H. Lu. The coproduct takes values in the bimodule tensor product over a base, what is expressed as the presence of coproduct gauge freedom.
In order to obtain free kappa-deformed quantum fields (with c-number commutators) we proposed new concept of kappa-deformed oscillator algebra [1] and the modification of kappa-star product [2], implementing in the product of two quantum fields the change of standard kappa-deformed mass-shell conditions. We recall here that the kappa-deformed oscillators recently introduced in [3]-[5] lie on standard kappa-deformed mass-shell. Firstly, we study kappa-deformed fields with the standard kappa-star product, what implies that in the oscillator algebra the corresponding kappa-deformed oscillators lie on standard kappa-deformed mass-shell. We argue that for the kappa-deformed algebra of such field oscillators which carry fourmomenta on kappa-deformed mass-shell it is not possible to obtain the free quantum kappa-deformed fields with the c-number commutators. Further, we study kappa-deformed quantum fields with the modified kappa-star product which implies the modification of kappa-deformed mass-shell. We obtain large class of kappa-deformed statistics depending on six arbitrary functions which provides the c-number field commutator functions. Such general class of kappa-oscillators can be described as the kappa-deformation of standard oscillator algebra obtained by composing general kappa-deformed multiplication with the deformation of the flip operator.
We consider deformations of unbounded operators by using the novel construction tool of warped convolutions. By using the Kato-Rellich theorem we show that unbounded self-adjoint deformed operators are self-adjoint if they satisfy a certain condition. This condition proves itself to be necessary for the oscillatory integral to be well-defined. Moreover, different proofs are given for self-adjointness of deformed unbounded operators in the context of quantum mechanics and quantum field theory.
n-ary algebras have played important roles in mathematics and mathematical physics. The purpose of this paper is to construct a deformation of Virasoro-Witt n-algebra based on an oscillator realization with two independent parameters (p, q) and investigate its n-Lie subalgebra.