Hermann Feshbach predicted fifty years ago that when two atomic nuclei are scattered within an open entrance channel-- the state observable at infinity, they may enter an intermediate closed channel -- the locally bounded state of the nuclei. If the energy of a bound state of in the closed channel is fine-tuned to match the relative kinetic energy, then the open channel and the closed channel resonate, so that the scattering length becomes divergent. We find that this so-called Feshbach resonance phenomenon not only exists during the collisions of massive particles, but also emerges during the coherent transport of massless particles, that is, photons confined in the coupled resonator arrays cite{lzhou08}. We implement the open and the closed channels inside a pair of such arrays, linked by a separated cavity or a tunable qubit. When a single photon is bounded inside the closed channel by setting the relevant physical parameters appropriately, the vanishing transmission appears to display this photonic Feshbach resonance. The general construction can be implemented through various experimentally feasible solid state systems, such as the couple defected cavities in photonic crystals. The numerical simulation based on finite-different time-domain(FDTD) method confirms our conceive about physical implementation.