Do you want to publish a course? Click here

Global well-posedness for the Gross-Pitaevskii equation with an angular momentum rotational term

169   0   0.0 ( 0 )
 Added by Chengchun Hao Dr.
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we establish the global well-posedness of the Cauchy problem for the Gross-Pitaevskii equation with an rotational angular momentum term in the space $Real^2$.



rate research

Read More

In this paper, we establish the global well-posedness of the Cauchy problem for the Gross-Pitaevskii equation with an angular momentum rotational term in which the angular velocity is equal to the isotropic trapping frequency in the space $Real^3$.
71 - Elena Kopylova 2019
We prove global well-posedness for 3D Dirac equation with a concentrated nonlinearity.
We study the Cauchy problem for the 3D Gross-Pitaevskii equation. The global well-posedness in the natural energy space was proved by Gerard cite{Gerard}. In this paper we prove scattering for small data in the same space with some additional angular regularity, and in particular in the radial case we obtain small energy scattering.
145 - Elena Kopylova 2016
We prove global well-posedness for the 3D Klein-Gordon equation with a concentrated nonlinearity.
181 - Fabrice Bethuel 2008
The purpose of this paper is to provide a rigorous mathematical proof of the existence of travelling wave solutions to the Gross-Pitaevskii equation in dimensions two and three. Our arguments, based on minimization under constraints, yield a full branch of solutions, and extend earlier results, where only a part of the branch was built. In dimension three, we also show that there are no travelling wave solutions of small energy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا