Do you want to publish a course? Click here

Hydrodynamics and perfect fluids: uniform description of soft observables in Au+Au collisions at RHIC

142   0   0.0 ( 0 )
 Added by Wojciech Florkowski
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

It is argued that the use of the initial Gaussian energy density profile for hydrodynamics leads to much better uniform description of the RHIC heavy-ion data than the use of the standard initial condition obtained from the Glauber model. With the modified Gaussian initial conditions we successfully reproduce the transverse-momentum spectra, v2, and the pionic HBT radii (including their azimuthal dependence). The emerging consistent picture of hadron production hints that a solution of the long standing RHIC HBT puzzle has been found.



rate research

Read More

80 - Zhijin Jiang , Dongfang Xu , 2017
The charged particles produced in heavy ion collisions consist of two parts: One is from the freeze-out of hot and dense matter formed in collisions. The other is from the leading particles. In this paper, the hot and dense matter is assumed to expand according to the hydrodynamic model including phase transition and decouples into particles via the prescription of Cooper-Frye. The leading particles are as usual supposed to have Gaussian rapidity distributions with the number equaling that of participants. The investigations of this paper show that, unlike low energy situations, the leading particles are essential in describing the pseudorapidity distributions of charged particles produced in high energy heavy ion collisions. This might be due to the different transparencies of nuclei at different energies.
133 - Krzysztof Wozniak 2007
In the PHOBOS experiment, charged particles are measured in almost the full solid angle. This enables the study of fluctuations and correlations in the particle production over a very wide kinematic range. In this paper, we show results of a direct search for fluctuations identified by an unusual shape of the pseudorapidity distribution. In addition, we use analysis of correlations of the multiplicity in similar pseudorapidity bins, placed symmetrically in the forward and backward hemispheres, to test the hypothesis of production of particles in clusters.
The hadron ratios measured in central Au-Au collisions are analysed by means of Hadron Resonance Gas (HRG) model over a wide range of nucleon-nucleon center-of-mass energies ranging from 7.7 to 200 GeV as offered by the STAR Beam Energy Scan I (BES-I). We restrict the discussion on STAR BES-I, because of large statistics and over all homogeneity of STAR measurements (one detector) against previous experiments. Over the last three decades, various heavy-ion experiments utilizing different detectors (different certainties) have been carried out. Regularities in produced particles at different energies haven been studied. The temperature and baryon chemical potential are deduced from fits of experimental ratios to thermal model calculations assuming chemical equilibrium. We find that the resulting freeze-out parameters using single hard-core value and point-like constituents of HRG are identical. This implies that the excluded-volume comes up with no effect on the extracted parameters. We compare the results with other studies and with the lattice QCD calculations. Various freeze-out conditions are confronted with the resulting data set. The effect of feed-down contribution from week decay and of including new resonances are also analysed. At vanishing chemical potential, a limiting temperature was estimated as T=158.5 MeV with 3 MeV uncertainty.
Collisions between prolate uranium nuclei are used to study how particle production and azimuthal anisotropies depend on initial geometry in heavy-ion collisions. We report the two- and four-particle cumulants, $v_2{2}$ and $v_2{4}$, for charged hadrons from U+U collisions at $sqrt{s_{rm NN}}$ = 193 GeV and Au+Au collisions at $sqrt{s_{rm NN}}$ = 200 GeV. Nearly fully overlapping collisions are selected based on the amount of energy deposited by spectators in the STAR Zero Degree Calorimeters (ZDCs). Within this sample, the observed dependence of $v_2{2}$ on multiplicity demonstrates that ZDC information combined with multiplicity can preferentially select different overlap configurations in U+U collisions. An initial-state model with gluon saturation describes the slope of $v_2{2}$ as a function of multiplicity in central collisions better than one based on Glauber with a two-component multiplicity model.
A simultaneous description of hadronic yields; pion, kaon, and proton spectra; elliptic flows; and femtoscopy scales in the hydrokinetic model of A+A collisions is presented at different centralities for the top BNL Relativistic Heavy Ion Collider (RHIC) and CERN Large Hadron Collider (LHC) 2.76-TeV energies. The initial conditions are based on the Glauber Monte-Carlo simulations. When going from RHIC to LHC energy in the model, the only parameters changed are the normalization of the initial entropy defined by the number of all charged particles in most central collisions, contribution to entropy from binary collisions and baryonic chemical potential. The hydrokinetic model is used in its hybrid version (hHKM), which provides the correct match (at the isochronic hypersurface) of the decaying hadron matter evolution with hadronic ultrarelativistic quantum molecular dynamics cascade. The results are compared with the standard hybrid models where hydrodynamics and hadronic cascade are matching just at the non-space-like hypersurface of chemical freeze-out or on the isochronic hypersurface. The modification of the particle number ratios at LHC caused, in particular, by the particle annihilations at the afterburn stage is also analyzed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا