Do you want to publish a course? Click here

A second row Parking Paradox

251   0   0.0 ( 0 )
 Added by Christof Kuelske
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider two variations of the discrete car parking problem where at every vertex of the integers a car arrives with rate one, now allowing for parking in two lines. a) The car parks in the first line whenever the vertex and all of its nearest neighbors are not occupied yet. It can reach the first line if it is not obstructed by cars already parked in the second line (screening). b) The car parks according to the same rules, but parking in the first line can not be obstructed by parked cars in the second line (no screening). In both models, a car that can not park in the first line will attempt to park in the second line. If it is obstructed in the second line as well, the attempt is discarded. We show that both models are solvable in terms of finite-dimensional ODEs. We compare numerically the limits of first and second line densities, with time going to infinity. While it is not surprising that model a) exhibits an increase of the density in the second line from the first line, more remarkably this is also true for model b), albeit in a less pronounced way.



rate research

Read More

149 - S.R. Fleurke , C. Kuelske 2009
In this paper we present a multilayer particle deposition model on a random tree. We derive the time dependent densities of the first and second layer analytically and show that in all trees the limiting density of the first layer exceeds the density in the second layer. We also provide a procedure to calculate higher layer densities and prove that random trees have a higher limiting density in the first layer than regular trees. Finally, we compare densities between the first and second layer and between regular and random trees.
While not generally a conservation law, any symmetry of the equations of motion implies a useful reduction of any second-order equationto a first-order equation between invariants, whose solutions (first integrals) can then be integrated by quadrature (Lies Theorem on the solvability of differential equations). We illustrate this theorem by applying scale invariance to the equations for the hydrostatic equilibrium of stars in local thermodynamic equilibrium: Scaling symmetry reduces the Lane-Emden equation to a first-order equation between scale invariants un; vn, whose phase diagram encapsulates all the properties of index-n polytropes. From this reduced equation, we obtain the regular (Emden) solutions and demonstrate graphically how they transform under scale transformations.
56 - I. Lyberg , B. M. McCoy 2006
We derive and prove exponential and form factor expansions of the row correlation function and the diagonal correlation function of the two dimensional Ising model.
121 - Shuji Watanabe 2008
We deal with the gap function and the thermodynamical potential in the BCS-Bogoliubov theory of superconductivity, where the gap function is a function of the temperature $T$ only. We show that the squared gap function is of class $C^2$ on the closed interval $[ 0, T_c ]$ and point out some more properties of the gap function. Here, $T_c$ stands for the transition temperature. On the basis of this study we then give, examining the thermodynamical potential, a mathematical proof that the transition to a superconducting state is a second-order phase transition. Furthermore, we obtain a new and more precise form of the gap in the specific heat at constant volume from a mathematical point of view.
In this paper we study some classes of second order non-homogeneous nonlinear differential equations allowing a specific representation for nonlinear Greens function. In particular, we show that if the nonlinear term possesses a special multiplicativity property, then its Greens function is represented as the product of the Heaviside function and the general solution of the corresponding homogeneous equations subject to non-homogeneous Cauchy conditions. Hierarchies of specific non-linearities admitting this representation are derived. The nonlinear Greens function solution is numerically justified for the sinh-Gordon and Liouville equations. We also list two open problems leading to a more thorough characterizations of non-linearities admitting the obtained representation for the nonlinear Greens function.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا