Do you want to publish a course? Click here

Si3N4 single-crystal nanowires grown from silicon micro and nanoparticles near the threshold of passive oxidation

85   0   0.0 ( 0 )
 Added by Jordi Farjas
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

A simple and most promising oxide-assisted catalyst-free method is used to prepare silicon nitride nanowires that give rise to high yield in a short time. After a brief analysis of the state of the art, we reveal the crucial role played by the oxygen partial pressure: when oxygen partial pressure is slightly below the threshold of passive oxidation, a high yield inhibiting the formation of any silica layer covering the nanowires occurs and thanks to the synthesis temperature one can control nanowire dimensions.



rate research

Read More

Self-limiting oxidation of nanowires has been previously described as a reaction- or diffusion-controlled process. In this letter, the concept of finite reactive region is introduced into a diffusion-controlled model, based upon which a two-dimensional cylindrical kinetics model is developed for the oxidation of silicon nanowires and is extended for tungsten. In the model, diffusivity is affected by the expansive oxidation reaction induced stress. The dependency of the oxidation upon curvature and temperature is modeled. Good agreement between the model predictions and available experimental data is obtained. The developed model serves to quantify the oxidation in two-dimensional nanostructures and is expected to facilitate their fabrication via thermal oxidation techniques. https://doi.org/10.1016/j.taml.2016.08.002
New insights into controlling nanowire merging phenomena are demonstrated in growth of thin ZnO nanowires using monodispersed Au colloidal nanoparticles as catalyst. Both nanowire diameter and density were found to be strongly dependent on the density of Au nanoparticles. Structural analysis and spectral cathodoluminescence imaging of the c-plane nanowire cross-sections reveal that thin isolated nanowires growing from the Au nanoparticles begin to merge and coalesce with neighbouring nanowires to form larger nanowires when their separation reaches a threshold distance. Green luminescence, which is originated from the remnants of constituent nanowires before merging, is detected at the core of fused nanowires. The distribution of nanowire diameters and green emission were found to be strongly dependent on the density of the Au nanoparticles. The merging phenomenon is attributed to electrostatic interactions between nanowire c-facets during growth and well-described by a cantilever bending model.
344 - Alberto Artioli 2013
Optically active gold-catalyzed ZnTe nanowires have been grown by molecular beam epitaxy, on a ZnTe(111) buffer layer, at low temperature 350degree under Te rich conditions, and at ultra-low density (from 1 to 5 nanowires per micrometer^{2}. The crystalline structure is zinc blende as identified by transmission electron microscopy. All nanowires are tapered and the majority of them are <111> oriented. Low temperature micro-photoluminescence and cathodoluminescence experiments have been performed on single nanowires. We observe a narrow emission line with a blue-shift of 2 or 3 meV with respect to the exciton energy in bulk ZnTe. This shift is attributed to the strain induced by a 5 nm-thick oxide layer covering the nanowires, and this assumption is supported by a quantitative estimation of the strain in the nanowires.
Porous materials provide a large surface to volume ratio, thereby providing a knob to alter fundamental properties in unprecedented ways. In thermal transport, porous nanomaterials can reduce thermal conductivity by not only enhancing phonon scattering from the boundaries of the pores and therefore decreasing the phonon mean free path, but also by reducing the phonon group velocity. Here we establish a structure-property relationship by measuring the porosity and thermal conductivity of individual electrolessly etched single crystalline silicon nanowires using a novel electron beam heating technique. Such porous silicon nanowires exhibit extremely low diffusive thermal conductivity (as low as 0.33 Wm-1K-1 at 300K for 43% porosity), even lower than that of amorphous silicon. The origin of such ultralow thermal conductivity is understood as a reduction in the phonon group velocity, experimentally verified by measuring the Young modulus, as well as the smallest structural size ever reported in crystalline Silicon (less than 5nm). Molecular dynamics simulations support the observation of a drastic reduction in thermal conductivity of silicon nanowires as a function of porosity. Such porous materials provide an intriguing platform to tune phonon transport, which can be useful in the design of functional materials towards electronics and nano-electromechanical systems.
We realize growth of self-catalyzed core-shell GaAs/GaAsP nanowires (NWs) on Si substrates using molecular-beam epitaxy. Transmission electron microscopy (TEM) of single GaAs/GaAsP NWs confirms their high crystal quality and shows domination of the zinc-blende phase. This is further confirmed in optics of single NWs, studied using cw and time-resolved photoluminescence (PL). A detailed comparison with uncapped GaAs NWs emphasizes the effect of the GaAsP capping in suppressing the non-radiative surface states: significant PL enhancement in the core-shell structures exceeding 2000 times at 10K is observed; in uncapped NWs PL is quenched at 60K whereas single core-shell GaAs/GaAsP NWs exhibit bright emission even at room temperature. From analysis of the PL temperature dependence in both types of NW we are able to determine the main carrier escape mechanisms leading to the PL quench.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا