Do you want to publish a course? Click here

Hydrogen dissociation on the Mg(0001) surface from quantum Monte Carlo calculations

180   0   0.0 ( 0 )
 Added by Dario Alf\\`e
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have used diffusion Monte Carlo (DMC) simulations to calculate the energy barrier for H$_2$ dissociation on the Mg(0001) surface. The calculations employ pseudopotentials and systematically improvable B-spline basis sets to expand the single particle orbitals used to construct the trial wavefunctions. Extensive tests on system size, time step, and other sources of errors, performed on periodically repeated systems of up to 550 atoms, show that all these errors together can be reduced to $sim 0.03$ eV. The DMC dissociation barrier is calculated to be $1.18 pm 0.03$ eV, and is compared to those obtained with density functional theory using various exchange-correlation functionals, with values ranging between 0.44 and 1.07 eV.



rate research

Read More

270 - M. Pozzo , D. Alf`e , A. Amieiro 2008
It is well known, both theoretically and experimentally, that alloying MgH$_2$ with transition elements can significantly improve the thermodynamic and kinetic properties for H$_2$ desorption, as well as the H$_2$ intake by Mg bulk. Here we present a density functional theory investigation of hydrogen dissociation and surface diffusion over Ni-doped surface, and compare the findings to previously investigated Ti-doped Mg(0001) and pure Mg(0001) surfaces. Our results show that the energy barrier for hydrogen dissociation on the pure Mg(0001) surface is high, while it is small/null when Ni/Ti are added to the surface as dopants. We find that the binding energy of the two H atoms near the dissociation site is high on Ti, effectively impeding diffusion away from the Ti site. By contrast, we find that on Ni the energy barrier for diffusion is much reduced. Therefore, although both Ti and Ni promote H$_2$ dissociation, only Ni appears to be a good catalyst for Mg hydrogenation, allowing diffusion away from the catalytic sites. Experimental results corroborate these theoretical findings, i.e. faster hydrogenation of the Ni doped Mg sample as opposed to the reference Mg or Ti doped Mg.
We report a study of the electronic dissociation energy of the water dimer using quantum Monte Carlo (QMC) techniques. We have performed variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) calculations of the electronic ground state of the water monomer and dimer using all-electron and pseudopotential approaches. We have used Slater-Jastrow trial wave functions with B3LYP-like single-particle orbitals, into which we have incorporated backflow correlations. When backflow correlations are introduced, the total energy of the water monomer decreases by about 4-5 mHa, yielding a DMC energy of -76.42830(5) Ha, which is only 10 mHa above the experimental value. In our pseudopotential DMC calculations, we have compared the total energies of the water monomer and dimer obtained using the locality approximation with those from the variational scheme recently proposed by Casula [Phys. Rev. B 74, 161102(R) (2006)]. The time step errors in the Casula scheme are larger and the extrapolation of the energy to zero time step always lies above the result obtained with the locality approximation. However, the errors cancel when energy differences are taken, yielding electronic dissociation energies within error bars of each other. The dissociation energies obtained in our various all-electron and pseudopotential calculations range between 5.03(7) and 5.47(9) kcal/mol and are in good agreement with experiment. Our calculations give monomer dipole moments which range between 1.897(2) and 1.909(4) Debye and dimer dipole moments which range between 2.628(6) and 2.672(5) Debye.
A theoretical study is reported of the molecular-to-atomic transition in solid hydrogen at high pressure. We use the diffusion quantum Monte Carlo method to calculate the static lattice energies of the competing phases and a density-functional-theory-based vibrational self-consistent field method to calculate anharmonic vibrational properties. We find a small but significant contribution to the vibrational energy from anharmonicity. A transition from the molecular Cmca-12 direct to the atomic I4_1/amd phase is found at 374 GPa. The vibrational contribution lowers the transition pressure by 91 GPa. The dissociation pressure is not very sensitive to the isotopic composition. Our results suggest that quantum melting occurs at finite temperature.
387 - Monica Pozzo , Dario Alfe` 2008
The kinetics of hydrogen absorption by magnesium bulk is affected by two main activated processes: the dissociation of the H$_2$ molecule and the diffusion of atomic H into the bulk. In order to have fast absorption kinetics both activated processed need to have a low barrier. Here we report a systematic ab-initio density functional theory investigation of H$_2$ dissociation and subsequent atomic H diffusion on TM(=Ti,V,Zr,Fe,Ru,Co,Rh,Ni,Pd,Cu,Ag)-doped Mg(0001) surfaces. The calculations show that doping the surface with TMs on the left of the periodic table eliminates the barrier for the dissociation of the molecule, but the H atoms bind very strongly to the TM, therefore hindering diffusion. Conversely, TMs on the right of the periodic table dont bind H, however, they do not reduce the barrier to dissociate H$_2$ significantly. Our results show that Fe, Ni and Rh, and to some extent Co and Pd, are all exceptions, combining low activation barriers for both processes, with Ni being the best possible choice.
We analyze the problem of eliminating finite-size errors from quantum Monte Carlo (QMC) energy data. We demonstrate that both (i) adding a recently proposed [S. Chiesa et al., Phys. Rev. Lett. 97, 076404 (2006)] finite-size correction to the Ewald energy and (ii) using the model periodic Coulomb (MPC) interaction [L. M. Fraser et al., Phys. Rev. B 53, 1814 (1996); P. R. C. Kent et al., Phys. Rev. B 59, 1917 (1999); A. J. Williamson et al., Phys. Rev. B 55, 4851 (1997)] are good solutions to the problem of removing finite-size effects from the interaction energy in cubic systems, provided the exchange-correlation (XC) hole has converged with respect to system size. However, we find that the MPC interaction distorts the XC hole in finite systems, implying that the Ewald interaction should be used to generate the configuration distribution. The finite-size correction of Chiesa et al. is shown to be incomplete in systems of low symmetry. Beyond-leading-order corrections to the kinetic energy are found to be necessary at intermediate and high densities, and we investigate the effect of adding such corrections to QMC data for the homogeneous electron gas. We analyze finite-size errors in two-dimensional systems and show that the leading-order behavior differs from that which has hitherto been supposed. We compare the efficiency of different twist-averaging methods for reducing single-particle finite-size errors and we examine the performance of various finite-size extrapolation formulas. Finally, we investigate the system-size scaling of biases in diffusion QMC.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا