Do you want to publish a course? Click here

Exact phase transition of backtrack-free search with implications on the power of greedy algorithms

121   0   0.0 ( 0 )
 Added by Ke Xu
 Publication date 2008
and research's language is English




Ask ChatGPT about the research

Backtracking is a basic strategy to solve constraint satisfaction problems (CSPs). A satisfiable CSP instance is backtrack-free if a solution can be found without encountering any dead-end during a backtracking search, implying that the instance is easy to solve. We prove an exact phase transition of backtrack-free search in some random CSPs, namely in Model RB and in Model RD. This is the first time an exact phase transition of backtrack-free search can be identified on some random CSPs. Our technical results also have interesting implications on the power of greedy algorithms, on the width of random hypergraphs and on the exact satisfiability threshold of random CSPs.



rate research

Read More

We study the problem of finding large cuts in $d$-regular triangle-free graphs. In prior work, Shearer (1992) gives a randomised algorithm that finds a cut of expected size $(1/2 + 0.177/sqrt{d})m$, where $m$ is the number of edges. We give a simpler algorithm that does much better: it finds a cut of expected size $(1/2 + 0.28125/sqrt{d})m$. As a corollary, this shows that in any $d$-regular triangle-free graph there exists a cut of at least this size. Our algorithm can be interpreted as a very efficient randomised distributed algorithm: each node needs to produce only one random bit, and the algorithm runs in one synchronous communication round. This work is also a case study of applying computational techniques in the design of distributed algorithms: our algorithm was designed by a computer program that searched for optimal algorithms for small values of $d$.
Given a clique-width $k$-expression of a graph $G$, we provide $2^{O(k)}cdot n$ time algorithms for connectivity constraints on locally checkable properties such as Node-Weighted Steiner Tree, Connected Dominating Set, or Connected Vertex Cover. We also propose a $2^{O(k)}cdot n$ time algorithm for Feedback Vertex Set. The best running times for all the considered cases were either $2^{O(kcdot log(k))}cdot n^{O(1)}$ or worse.
We consider a multi-agent model for fair division of mixed manna (i.e. items for which agents can have positive, zero or negative utilities), in which agents have additive utilities for bundles of items. For this model, we give several general impossibility results and special possibility results for three common fairness concepts (i.e. EF1, EFX, EFX3) and one popular efficiency concept (i.e. PO). We also study how these interact with common welfare objectives such as the Nash, disutility Nash and egalitarian welfares. For example, we show that maximizing the Nash welfare with mixed manna (or minimizing the disutility Nash welfare) does not ensure an EF1 allocation whereas with goods and the Nash welfare it does. We also prove that an EFX3 allocation may not exist even with identical utilities. By comparison, with tertiary utilities, EFX and PO allocations, or EFX3 and PO allocations always exist. Also, with identical utilities, EFX and PO allocations always exist. For these cases, we give polynomial-time algorithms, returning such allocations and approximating further the Nash, disutility Nash and egalitarian welfares in special cases.
MAXCUT defines a classical NP-hard problem for graph partitioning and it serves as a typical case of the symmetric non-monotone Unconstrained Submodular Maximization (USM) problem. Applications of MAXCUT are abundant in machine learning, computer vision and statistical physics. Greedy algorithms to approximately solve MAXCUT rely on greedy vertex labelling or on an edge contraction strategy. These algorithms have been studied by measuring their approximation ratios in the worst case setting but very little is known to characterize their robustness to noise contaminations of the input data in the average case. Adapting the framework of Approximation Set Coding, we present a method to exactly measure the cardinality of the algorithmic approximation sets of five greedy MAXCUT algorithms. Their information contents are explored for graph instances generated by two different noise models: the edge reversal model and Gaussian edge weights model. The results provide insights into the robustness of different greedy heuristics and techniques for MAXCUT, which can be used for algorithm design of general USM problems.
For a graph $G=(V,E)$, $kin mathbb{N}$, and a complex number $w$ the partition function of the univariate Potts model is defined as [ {bf Z}(G;k,w):=sum_{phi:Vto [k]}prod_{substack{uvin E phi(u)=phi(v)}}w, ] where $[k]:={1,ldots,k}$. In this paper we give zero-free regions for the partition function of the anti-ferromagnetic Potts model on bounded degree graphs. In particular we show that for any $Deltain mathbb{N}$ and any $kgeq eDelta+1$, there exists an open set $U$ in the complex plane that contains the interval $[0,1)$ such that ${bf Z}(G;k,w) eq 0$ for any $win U$ and any graph $G$ of maximum degree at most $Delta$. (Here $e$ denotes the base of the natural logarithm.) For small values of $Delta$ we are able to give better results. As an application of our results we obtain improved bounds on $k$ for the existence of deterministic approximation algorithms for counting the number of proper $k$-colourings of graphs of small maximum degree.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا