Do you want to publish a course? Click here

Spontaneous ordering against an external field in nonequilibrium systems

123   0   0.0 ( 0 )
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the collective behavior of nonequilibrium systems subject to an external field with a dynamics characterized by the existence of non-interacting states. Aiming at exploring the generality of the results, we consider two types of models according to the nature of their state variables: (i) a vector model, where interactions are proportional to the overlap between the states, and (ii) a scalar model, where interaction depends on the distance between states. In both cases the system displays three phases: two ordered phases, one parallel to the field, and another orthogonal to the field; and a disordered phase. The phase space is numerically characterized for each model in a fully connected network. By placing the particles on a small-world network, we show that, while a regular lattice favors the alignment with the field, the presence of long-range interactions promotes the formation of the ordered phase orthogonal to the field.



rate research

Read More

Discrete-spin systems with maximally random nearest-neighbor interactions that can be symmetric or asymmetric, ferromagnetic or antiferromagnetic, including off-diagonal disorder, are studied, for the number of states $q=3,4$ in $d$ dimensions. We use renormalization-group theory that is exact for hierarchical lattices and approximate (Migdal-Kadanoff) for hypercubic lattices. For all d>1 and all non-infinite temperatures, the system eventually renormalizes to a random single state, thus signaling qxq degenerate ordering. Note that this is the maximally degenerate ordering. For high-temperature initial conditions, the system crosses over to this highly degenerate ordering only after spending many renormalization-group iterations near the disordered (infinite-temperature) fixed point. Thus, a temperature range of short-range disorder in the presence of long-range order is identified, as previously seen in underfrustrated Ising spin-glass systems. The entropy is calculated for all temperatures, behaves similarly for ferromagnetic and antiferromagnetic interactions, and shows a derivative maximum at the short-range disordering temperature. With a sharp immediate contrast of infinitesimally higher dimension 1+epsilon, the system is as expected disordered at all temperatures for d=1.
We present results on the first excited states for the random-field Ising model. These are based on an exact algorithm, with which we study the excitation energies and the excitation sizes for two- and three-dimensional random-field Ising systems with a Gaussian distribution of the random fields. Our algorithm is based on an approach of Frontera and Vives which, in some cases, does not yield the true first excited states. Using the corrected algorithm, we find that the order-disorder phase transition for three dimensions is visible via crossings of the excitations-energy curves for different system sizes, while in two-dimensions these crossings converge to zero disorder. Furthermore, we obtain in three dimensions a fractal dimension of the excitations cluster of d_s=2.42(2). We also provide analytical droplet arguments to understand the behavior of the excitation energies for small and large disorder as well as close to the critical point.
88 - C.M. Newman 2003
In this topical review we discuss the nature of the low-temperature phase in both infinite-ranged and short-ranged spin glasses. We analyze the meaning of pure states in spin glasses, and distinguish between physical, or ``observable, states and (probably) unphysical, ``invisible states. We review replica symmetry breaking, and describe what it would mean in short-ranged spin glasses. We introduce the notion of thermodynamic chaos, which leads to the metastate construct. We apply these tools to short-ranged spin glasses, and conclude that replica symmetry breaking, in any form, cannot describe the low-temperature spin glass phase in any finite dimension. We then discuss the remaining possible scenarios that_could_ describe the low-temperature phase, and the differences they exhibit in some of their physical properties -- in particular, the interfaces that separate them. We also present rigorous results on metastable states and discuss their connection to thermodynamic states. Finally, we discuss some of the differences between the statistical mechanics of homogeneous systems and those with quenched disorder and frustration.
The highly diluted antiferromagnet Mn(0.35)Zn(0.65)F2 has been investigated by neutron scattering in zero field. The Bragg peaks observed below the Neel temperature TN (approximately 10.9 K) indicate stable antiferromagnetic long-range ordering at low temperature. The critical behavior is governed by random-exchange Ising model critical exponents (nu approximately 0.69 and gamma approximately 1.31), as reported for Mn(x)Zn(1-x)F2 with higher x and for the isostructural compound Fe(x)Zn(1-x)F2. However, in addition to the Bragg peaks, unusual scattering behavior appears for |q|>0 below a glassy temperature Tg approximately 7.0 K. The glassy region T<Tg corresponds to that of noticeable frequency dependence in earlier zero-field ac susceptibility measurements on this sample. These results indicate that long-range order coexists with short-range nonequilibrium clusters in this highly diluted magnet.
Kinetic Ising models are powerful tools for studying the non-equilibrium dynamics of complex systems. As their behavior is not tractable for large networks, many mean-field methods have been proposed for their analysis, each based on unique assumptions about the systems temporal evolution. This disparity of approaches makes it challenging to systematically advance mean-field methods beyond previous contributions. Here, we propose a unifying framework for mean-field theories of asymmetric kinetic Ising systems from an information geometry perspective. The framework is built on Plefka expansions of a system around a simplified model obtained by an orthogonal projection to a sub-manifold of tractable probability distributions. This view not only unifies previous methods but also allows us to develop novel methods that, in contrast with traditional approaches, preserve the systems correlations. We show that these new methods can outperform previous ones in predicting and assessing network properties near maximally fluctuating regimes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا