We consider the two dimensional disordered Bose gas which present a metallic state at low temperatures. A simple model of an interacting Bose system in a random field is propose to consider the interaction effect on the transition in the metallic state.
In order to understand the dynamical mechanism of the friction phenomena, we heavily rely on the numerical analysis using various methods: molecular dynamics, Langevin equation, lattice Boltzmann method, Monte Carlo, e.t.c.. We propose a new method which has the following characteristic points: 1) the geometrical approach to the statistical mechanical system; 2) the continuum approach using Feynmans path integral (generalized version); 3) the holographic (higher-dimensional) approach; 4) the renormalization phenomenon takes place in order to treat the statistical fluctuation.
The phase diagram of the one-dimensional extended Hubbard model at half-filling is investigated by a weak coupling renormalization group method applicable beyond the usual continuum limit for the electron spectrum and coupling constants. We analyze the influence of irrelevant momentum dependent interactions on asymptotic properties of the correlation functions and the nature of dominant phases for the lattice model under study.
Metallic phases have been observed in several disordered two dimensional (2d) systems, including thin films near superconductor-insulator transitions and quantum Hall systems near plateau transitions. The existence of 2d metallic phases at zero temperature generally requires an interplay of disorder and interaction effects. Consequently, experimental observations of 2d metallic behavior have largely defied explanation. We formulate a general stability criterion for strongly interacting, massless Dirac fermions against disorder, which describe metallic ground states with vanishing density of states. We show that (2+1)-dimensional quantum electrodynamics (QED$_3$) with a large, even number of fermion flavors remains metallic in the presence of weak scalar potential disorder due to the dynamic screening of disorder by gauge fluctuations. We also show that QED$_3$ with weak mass disorder exhibits a stable, dirty metallic phase in which both interactions and disorder play important roles.
We study a mixture of ultracold spin-half fermionic and spin-one bosonic atoms in a shallow optical lattice where the bosons are coupled to the fermions via both density-density and spin-spin interactions. We consider the parameter regime where the bosons are in a superfluid ground state, integrate them out, and obtain an effective action for the fermions. We carry out a renormalization group analysis of this effective fermionic action at low temperatures, show that the presence of the spinor bosons may lead to a separation of Fermi surfaces of the spin-up and spin-down fermions, and investigate the parameter range where this phenomenon occurs. We also calculate the susceptibilities corresponding to the possible superfluid instabilities of the fermions and obtain their possible broken-symmetry ground states at low temperatures and weak interactions.
Large fluctuations of conductivity with time are observed in a low-mobility two-dimensional electron system in silicon at low electron densities $n_s$ and temperatures. A dramatic increase of the noise power ($propto 1/f^{alpha}$) as $n_s$ is reduced below a certain density $n_g$, and a sharp jump of $alpha$ at $n_sapprox n_g$, are attributed to the freezing of the electron glass at $n_s = n_g$. The data strongly suggest that glassy dynamics persists in the metallic phase.