Do you want to publish a course? Click here

Peierls Instability Induced Ferromagnetic Insulator at Orbital Order Transition

132   0   0.0 ( 0 )
 Added by Jianhua Wei
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The origin of ferromagnetic insulating state of La$_{7/8}$Sr$_{1/8}$MnO$_3$ is investigated. Based on the tight-binding model, it is shown that this state can be attributed to the Peierls instability arisen from the interplay of spin and orbital ordering. The importance of the hole-orbiton-phonon intercoupling in doped manganites is revealed. This picture explains well the recent experimental finding of the reentrance of ferromagnetic metal state at low temperature [Phys. Rev. Lett. 96, 097201 (2006)].



rate research

Read More

Anisotropic magnetoresistance (AMR) of Cr2Ge2Te6 (CGT), a layered ferromagnetic insulator, is investigated under an applied hydrostatic pressure up to 2 GPa. The easy axis direction of the magnetization is inferred from the AMR saturation feature in the presence and absence of the applied pressure. At zero applied pressure, the easy axis is along the c-direction or perpendicular to the layer. Upon application of a hydrostatic pressure>1 GPa, the uniaxial anisotropy switches to easy-plane anisotropy which drives the equilibrium magnetization from the c-axis to the ab-plane at zero magnetic field, which amounts to a giant magnetic anisotropy energy change (>100%). As the temperature is increased across the Curie temperature, the characteristic AMR effect gradually decreases and disappears. Our first-principles calculations confirm the giant magnetic anisotropy energy change with moderate pressure and assign its origin to the increased off-site spin-orbit interaction of Te atoms due to a shorter Cr-Te distance. Such a pressure-induced spin reorientation transition is very rare in three-dimensional ferromagnets, but it may be common to other layered ferromagnets with similar crystal structures to CGT, and therefore offers a unique way to control magnetic anisotropy.
167 - T. Toriyama , A. Nakao , Y. Yamaki 2011
Synchrotron X-ray diffraction experiment shows that the metal-insulator transition occurring in a ferromagnetic state of a hollandite K$_2$Cr$_8$O$_{16}$ is accompanied by a structural distortion from the tetragonal $I4/m$ to monoclinic $P112_{1}/a$ phase with a $sqrt{2}timessqrt{2}times 1$ supercell. Detailed electronic structure calculations demonstrate that the metal-insulator transition is caused by a Peierls instability in the quasi-one-dimensional column structure made of four coupled Cr-O chains running in the $c$-direction, leading to the formation of tetramers of Cr ions below the transition temperature. This furnishes a rare example of the Peierls transition of fully spin-polarized electron systems.
169 - Yuanping Chen , Y.Y. Sun , H. Wang 2015
A three-dimensional elemental carbon Kagome lattice (CKL), made of only fourfold coordinated carbon atoms, is proposed based on first-principles calculations. Despite the existence of 60{deg} bond angles in the triangle rings, widely perceived to be energetically unfavorable, the CKL is found to display exceptional stability comparable to that of C60. The system allows us to study the effects of triangular frustration on the electronic properties of realistic solids, and it demonstrates a metal-insulator transition from that of graphene to a direct gap semiconductor in the visible blue region. By minimizing s-p orbital hybridization, which is an intrinsic property of carbon, not only the band edge states become nearly purely frustrated p states, but also the band structure is qualitatively different from any known bulk elemental semiconductors. For example, the optical properties are similar to those of direct-gap semiconductors GaN and ZnO, whereas the effective masses are comparable or smaller than those of Si.
While some of the most elegant applications of topological insulators, such as quantum anomalous Hall effect, require the preservation of Dirac surface states in the presence of time-reversal symmetry breaking, other phenomena such as spin-charge conversion rather rely on the ability for these surface states to imprint their spin texture on adjacent magnetic layers. In this work, we investigate the spin-momentum locking of the surface states of a wide range of monolayer transition metals (3$d$-TM) deposited on top of Bi$_{2}$Se$_{3}$ topological insulators using first principles calculations. We find an anticorrelation between the magnetic moment of the 3$d$-TM and the magnitude of the spin-momentum locking {em induced} by the Dirac surface states. While the magnetic moment is large in the first half of the 3$d$ series, following Hunds rule, the spin-momentum locking is maximum in the second half of the series. We explain this trend as arising from a compromise between intra-atomic magnetic exchange and covalent bonding between the 3$d$-TM overlayer and the Dirac surface states. As a result, while Cr and Mn overlayers can be used successfully for the observation of quantum anomalous Hall effect or the realization of axion insulators, Co and Ni are substantially more efficient for spin-charge conversion effects, e.g. spin-orbit torque and charge pumping.
209 - A. M. Kadigrobov 2008
We predict the new type of phase transition in quasi one-dimensional system of interacting electrons at high magnetic fields, the stabilization of a density wave which transforms a two dimensional open Fermi surface into a periodic chain of large pockets with small distances between them. We show that quantum tunneling of electrons between the neighboring closed orbits enveloping these pockets transforms the electron spectrum into a set of extremely narrow energy bands and gaps that decreases the total electron energy, thus leading to a emph{magnetic breakdown induced density wave} ground state analogous to the well-known instability of Peierls type.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا