Do you want to publish a course? Click here

Magnetic exchange interaction between rare-earth and Mn ions in multiferroic hexagonal manganites

149   0   0.0 ( 0 )
 Added by Diyar Talbayev
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report a study of magnetic dynamics in multiferroic hexagonal manganite HoMnO3 by far-infrared spectroscopy. Low-temperature magnetic excitation spectrum of HoMnO3 consists of magnetic-dipole transitions of Ho ions within the crystal-field split J=8 manifold and of the triangular antiferromagnetic resonance of Mn ions. We determine the effective spin Hamiltonian for the Ho ion ground state. The magnetic-field splitting of the Mn antiferromagnetic resonance allows us to measure the magnetic exchange coupling between the rare-earth and Mn ions.



rate research

Read More

Multiferroic rare earth manganites attracted recent attention because of the coexistence of different types of magnetic and ferroelectric orders resulting in complex phase diagrams and a wealth of physical phenomena. The coupling and mutual interference of the different orders and the large magnetoelectric effect observed in several compounds are of fundamental interest and bear the potential for future applications in which the dielectric (magnetic) properties can be modified by the onset of a magnetic (dielectric) transition or the application of a magnetic (electric) field. The physical mechanisms of the magnetoelectric effect and the origin of ferroelectric order at magnetic transitions have yet to be explored. We discuss multiferroic phenomena in the hexagonal HoMnO3 and show that the strong magneto-dielectric coupling is intimately related to the lattice strain induced by unusually large spin-phonon correlations.
Using first-principles calculations we examine the band structures of ferromagnetic hexagonal manganites $mathrm{YXO_3}$ (X=V, Cr, Mn, Fe and Co) in the nonpolar nonsymmorphic $P6_3/mmc$ space group. For $mathrm{YVO_3}$ and $mathrm{YCrO_3}$ we find a band inversion near the Fermi energy that generates a nodal ring in the $k_z=0$ mirror plane. We perform a more detailed analysis for these compounds and predict the existence of the topological drumhead surface states. Finally, we briefly discuss the low-symmetry polar phases (space group $P6_3cm$) of these systems, and show they can undergo a $P6_3/mmc rightarrow P6_3cm$ transition by condensation of soft $K_3$ and $Gamma_2^-$ phonons. Based on our findings, stabilizing these compounds in the hexagonal phase could offer a promising platform for studying the interplay of topology and multiferroicity, and the coexistence of real-space and reciprocal-space topological protection in the same phase.
We have employed resonant x-ray magnetic scattering to specifically probe the magnetic order of the rare-earth ions in multiferroic $mathrm{TbMn_2O_5}$. Two energy resonances were observed, one originated from the E1-E1 dipolar transition and the other from the E2-E2 quadrupolar transition. These resonances directly probe the valence 5d band and the partially occupied 4f band, respectively. First, full polarization analysis, which is a measurement of the scattered polarization as a function of incident polarization, confirmed a spin polarization of the terbium valence states (probed by the E1-E1 transition) by the $mathrm{Mn^{4+}}$ spin density in the commensurate phase. Second, full polarization analysis data were collected in the low-temperature incommensurate and commensurate phases when tuned to the E2-E2 resonance. By employing a least-squares fitting procedure, the spin orientations of the terbium ion sublattice were refined.
The spontaneous transformations associated with symmetry-breaking phase transitions generate domain structures and defects that may be topological in nature. The formation of these defects can be described according to the Kibble-Zurek mechanism, which provides a generic relation that applies from cosmological to interatomic lengthscales. Its verification is challenging, however, in particular at the cosmological scale where experiments are impractical. While it has been demonstrated for selected condensed-matter systems, major questions remain regarding e.g. its degree of universality. Here we develop a global Kibble-Zurek picture from the condensed-matter level. We show theoretically that a transition between two fluctuation regimes (Ginzburg and mean-field) can lead to an intermediate region with reversed scaling, and we verify experimentally this behavior for the structural transition in the series of multiferroic hexagonal manganites. Trends across the series allow us to identify additional intrinsic features of the defect formation beyond the original Kibble-Zurek paradigm.
We report the results of an unpolarized small-angle neutron scattering (SANS) study on Mn-Bi-based rare-earth-free permanent magnets. The magnetic SANS cross section is dominated by long-wavelength transversal magnetization fluctuations and has been analyzed in terms of the Guinier-Porod model and the distance distribution function. This provides the radius of gyration which, in the remanent state, ranges between about $220-240 , mathrm{nm}$ for the three different alloy compositions investigated. Moreover, computation of the distance distribution function in conjunction with results for the so-called $s$-parameter obtained from the Guinier-Porod model indicate that the magnetic scattering of a Mn$_{45}$Bi$_{55}$ sample has its origin in slightly shape-anisotropic structures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا