Do you want to publish a course? Click here

Isospin Mass Differences of Heavy Baryons

433   0   0.0 ( 0 )
 Added by Harald Fritzsch
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

We discuss the mass differences for isospin multiplets of the charmed and b-flavored baryons. The mass of the neutral b-flavored sigma baryon, which is not measured, is calculated. We point out, that the measurements of the mass differences between the charmed sigma and chi baryons might be wrong.



rate research

Read More

We study the isospin mass differences of singly heavy baryons, based on a pion mean-field approach. We consider both the electromagnetic interactions and the hadronic contributions that arise from the mass difference of the up and down quarks. The relevant parameters have been already fixed by the baryon octet. In addition, we introduce the strong hyperfine interactions between the light quarks inside a chiral soliton and the Coulomb interactions between the chiral soliton and a heavy quark. The numerical results are in good agreement with the experimental data. In particular, the results for the neutral mass relations, which contain only the electromagnetic contributions, are in remarkable agreement with the data, which implies that the pion mean field approach provides a good description of the singly heavy baryons.
Baryons with one or more heavy quarks have been shown, in the context of a nonrelativistic description, to exhibit mass inequalities under permutations of their quarks, when spin averages are taken. These inequalities sometimes are invalidated when spin-dependent forces are taken into account. A notable instance is the inequality $2E(Mmm) > E(MMm) + E(mmm)$, where $m = m_u = m_d$, satisfied for $M = m_b$ or $M = m_c$ but not for $M = m_s$, unless care is taken to remove effects of spin-spin interactions. Thus in the quark-level analog of nuclear fusion, the reactions $Lambda_b Lambda_b to Xi_{bb}N$ and $Lambda_c Lambda_c to Xi_{cc}^{++}n$ are exothermic, releasing respectively 138 and 12 MeV, while $Lambda Lambda to Xi N$ is endothermic, requiring an input of between 23 and 29 MeV. Here we explore such mass inequalities in the context of an approach, previously shown to predict masses successfully, in which contributions consist of additive constituent-quark masses, spin-spin interactions, and additional binding terms for pairs each member of which is at least as heavy as a strange quark.
149 - R.M. Albuquerque 2009
We extract directly (for the first time) the charmed (C=1) and bottom (B=-1) heavy-baryons (spin 1/2 and 3/2) mass-splittings due to SU(3) breaking using double ratios of QCD spectral sum rules (QSSR) in full QCD, which are less sensitive to the exact value and definition of the heavy quark mass, to the perturbative radiative corrections and to the QCD continuum contributions than the simple ratios commonly used for determining the heavy baryon masses. Noticing that most of the mass-splittings are mainly controlled by the ratio kappa= <bar ss>/<bar dd> of the condensate, we extract this ratio, by allowing 1 sigma deviation from the observed masses of the Xi_{c,b} and of the Omega_c. We obtain: kappa=0.74(3), which improves the existing estimates: kappa=0.70(10) from light hadrons. Using this value, we deduce M_{Omega_b}=6078.5(27.4) MeV which agrees with the recent CDF data but disagrees by 2.4 sigma with the one from D0. Predictions of the Xi_Q and of the spectra of spin 3/2 baryons containing one or two strange quark are given in Table 2. Predictions of the hyperfine splittings Omega*_Q- Omega_Q and Xi*_Q-Xi_Q are also given in Table 3. Starting for a general choice of the interpolating currents for the spin 1/2 baryons, our analysis favours the optimal value of the mixing angle b= (-1/5 -- 0) found from light and non-strange heavy baryons.
Using the calculated values of the strong coupling constants of the heavy sextet spin-3/2 baryons to sextet and antitriplet heavy spin-1/2 baryons with light mesons within the light cone QCD sum rules method, and vector meson dominance assumption, the radiative decay widths are calculated. These widths are compared with the direct radiative decay widths predicted in the framework of the light cone QCD sum rules.
The mass spectra and wave functions for the doubly heavy baryons are computed under the picture that the two heavy quarks inside a doubly heavy baryon, such as two $c$-quarks in $Xi_{cc}$, combine into a heavy `diquark core in color anti-triplet firstly, then the diquark core turns into a color-less doubly heavy baryon via combining the light $q$-quark inside the baryon. Namely both of the combinations, the two heavy quarks inside the baryon into a diquark core in color anti-triplet and the heavy diquark core with the light quark into the baryon, are depicted by relativistic Bethe-Salpeter equations (BSEs) with an accordingly QCD inspired kernel respectively, although in the paper only the heavy diquark cores with the quantum numbers $J^P=1^+$ are considered. Since the `second combination is of the heavy diquark core and the light quark, so the structure effect of the diquark core to the relevant kernel of the BSE is specially considered in terms of the diquark-core wave functions. The mass spectra and wave functions for the `low-laying doubly heavy baryons in the flavors $(ccq)$, $(bcq)$ and $(bbq)$ and in the quantum numbers $J^P=frac{1}{2}^+$, $J^P=frac{3}{2}^+$, achieved by solving the equations under the so-called instantaneous approximation, are presented properly and some comparisons with the others results under different approaches in the literature are made.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا