The interplay between magnetism and metal-insulator transitions is fundamental to the rich physics of the single band fermion Hubbard model (FHM). Recent progress in experiments on trapped ultra-cold atoms have made possible the exploration of similar effects in the boson Hubbard model (BHM). This paper reports Quantum Monte Carlo (QMC) simulations of the spin-1 BHM in the ground state. In the case of antiferromagnetic interactions, which favor singlet formation within the Mott insulator lobes, we present exact numerical evidence that the superfluid-insulator phase transition is first (second) order depending on whether the Mott lobe is even (odd). In the ferromagnetic case, the transitions are all continuous. We obtain the phase diagram in the case of attractive spin interactions and demonstrate the existence of the ferromagnetic superfluid. We also compare the QMC phase diagram with a third order perturbation calculation.