Do you want to publish a course? Click here

The role of magnetic fields in governing the angular momentum evolution of solar-type stars

137   0   0.0 ( 0 )
 Added by Jerome Bouvier
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

I review the development of ideas regarding the angular momentum evolution of solar-type stars, from the early 60s to the most recent years. Magnetic fields are the central agent that dictates the rotational evolution of solar-type stars, both during the pre-main sequence, through star-disk magnetic coupling, and during the main sequence, through magnetized winds. Key theoretical developments as well as important observational results are summarized in this review.



rate research

Read More

The surface rotation rates of young solar-type stars decrease rapidly with age from the end of the pre-main sequence though the early main sequence. This suggests that there is also an important change in the dynamos operating in these stars, which should be observable in their surface magnetic fields. Here we present early results in a study aimed at observing the evolution of these magnetic fields through this critical time period. We are observing stars in open clusters and stellar associations to provide precise ages, and using Zeeman Doppler Imaging to characterize the complex magnetic fields. Presented here are results for six stars, three in the in the beta Pic association (~10 Myr old) and three in the AB Dor association (~100 Myr old).
Surface rotation rates of young solar-type stars display drastic changes at the end of the pre-main sequence through the early main sequence. This may trigger corresponding changes in the magnetic dynamos operating in these stars, which ought to be observable in their surface magnetic fields. We present here the first results of an observational effort aimed at characterizing the evolution of stellar magnetic fields through this critical phase. We observed stars from open clusters and associations, which range from 20 to 600 Myr, and used Zeeman Doppler Imaging to characterize their complex magnetic fields. We find a clear trend towards weaker magnetic fields for older ages, as well as a tight correlation between magnetic field strength and Rossby number over this age range. Comparing to results for younger T Tauri stars, we observe a very significant change in magnetic strength and geometry, as the radiative core develops during the late pre-main sequence.
The surface rotation rates of young solar-type stars vary rapidly with age from the end of the pre-main sequence through the early main sequence. Important changes in the dynamos operating in these stars may result from this evolution, which should be observable in their surface magnetic fields. Here we present a study aimed at observing the evolution of these magnetic fields through this critical time period. We observed stars in open clusters and stellar associations of known ages, and used Zeeman Doppler Imaging to characterize their complex magnetic large-scale fields. Presented here are results for 15 stars, from 5 associations, with ages from 20 to 250 Myr, masses from 0.7 to 1.2 solar masses, and rotation periods from 0.4 to 6 days. We find complex large-scale magnetic field geometries, with global average strengths from 14 to 140 G. There is a clear trend towards decreasing average large-scale magnetic field strength with age, and a tight correlation between magnetic field strength and Rossby number. Comparing the magnetic properties of our zero-age main sequence sample to those of both younger and older stars, it appears that the magnetic evolution of solar-type stars during the pre-main sequence is primarily driven by structural changes, while it closely follows the stars rotational evolution on the main sequence.
We investigate the helium dimer in strong magnetic fields, focusing on the spectrum of low-lying electronic states and their dissociation curves, at the full configuration-interaction level of theory. To address the loss of cylindrical symmetry and angular momentum as a good quantum number for nontrivial angles between the bond axis and magnetic field, we introduce the almost quantized angular momentum (AQAM) and show that it provides useful information about states in arbitrary orientations. In general, strong magnetic fields dramatically rearrange the spectrum, with the orbital Zeeman effect bringing down states of higher angular momentum below the states with pure $sigma$ character as the field strength increases. In addition, the spin Zeeman effect pushes triplet states below the lowest singlet; in particular, a field of one atomic unit is strong enough to push a quintet state below the triplets. In general, the angle between the bond axis and the magnetic field also continuously modulates the degree of $sigma$, $pi$, and $delta$ character of bonds and the previously identified perpendicular paramagnetic bonding mechanism is found to be common among excited states. Electronic states with preferred skew field orientations are identified and rationalized in terms of permanent and induced electronic currents.
To better understand the observed distributions of rotation rate and magnetic activity of sun-like and low-mass stars, we derive a physically motivated scaling for the dependence of the stellar-wind torque on Rossby number. The torque also contains an empirically-derived scaling with stellar mass (and radius), which provides new insight into the mass-dependence of stellar magnetic and wind properties. We demonstrate that this new formulation explains why the lowest mass stars are observed to maintain rapid rotation for much longer than solar-mass stars, and simultaneously, why older populations exhibit a sequence of slowly rotating stars, in which the low-mass stars rotate more slowly than solar-mass stars. The model also reproduces some previously unexplained features in the period-mass diagram for the Kepler field, notably: the particular shape of the upper envelope of the distribution, suggesting that ~95% of Kepler field stars with measured rotation periods are younger than ~4 Gyr; and the shape of the lower envelope, corresponding to the location where stars transition between magnetically saturated and unsaturated regimes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا