Do you want to publish a course? Click here

Band structure of tetragonal and orthorhombic fluorine-arsenide SrFeAsF as a parent phases for a new group of oxygen-free FeAs superconductors

453   0   0.0 ( 0 )
 Added by Igor Shein
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The full-potential linearized augmented plane wave method with the generalized gradient approximation for the exchange and correlation potential (LAPW-GGA) is used to understand the electronic band structure of fluorine-arsenide SrFeAsF as a possible parent material for a new group of oxygen-free FeAs superconductors. The electronic bands, density of states, Fermi surface and atomic charges have been evaluated and discussed for high-temperature tetragonal and low-temperature orthorhombic SrFeAsF phases.



rate research

Read More

By means of first-principle FLAPW-GGA calculations, we have investigated the electronic properties of the newly discovered layered quaternary systems SrFeAsF and CaFeAsF as parent phases for a new group of oxygen-free FeAs superconductors. The electronic bands, density of states, Fermi surfaces, atomic charges, together with Sommerfeld coefficients and molar Pauli paramagnetic susceptibility have been evaluated and discussed in comparison with oxyarsenide LaFeAsO - a parent phase for a new class of high-temperature (Tc about 26-56K) oxygen-containing FeAs superconductors. Similarity of our data for SrFeAsF and CaFeAsF with the band structure of oxygen-containing FeAs superconducting materials may be considered as theoretical background specifying the possibility of superconductivity in these oxygen-free systems.
By means of first-principles FLAPW-GGA calculations, we have investigated the electronic properties of the newly synthesized layered phase - (Sr3Sc2O5)Fe2As2. The electronic bands, density of states and Fermi surface have been evaluated. The resembling of our data for (Sr3Sc2O5)Fe2As2 with band structure pictures of known FeAs superconducting materials may be considered as the theoretical background specifying the possibility for (Sr3Sc2O5)Fe2As2 to become a parent phase for new FeAs superconductors.
Very recently, the tetragonal BiOCuS was synthesized and declared as a new superconducting system with Fe-oxypnictide - related structure. Here, based on first-principle FLAPW-GGA calculations, the structural parameters, electronic bands picture, density of states and electron density distribution for BiOCuS are investigated for the first time. Our results show that, as distinct from related metallic-like FeAs systems, BiOCuS phase behaves as an ionic semiconductor with the calculated indirect band gap at about 0.48 eV. The superconductivity for BiOCuS may be achieved exclusively by doping of this phase. Our preliminary results demonstrate that as a result of hole doping, the [CuS] blocks become conducting owing to mixed Cu 3d + S 3p bands located near the Fermi level. For the hole doped BiOCuS the Fermi surface adopts a quasi-two-dimensional character, similarly to FeAs SCs.
152 - Xiyu Zhu , Fei Han , Gang Mu 2008
A new compound with the FeAs-layers, namely (Sr_3Sc_2O_5)Fe_2As_2 (abbreviated as FeAs-32522), was successfully fabricated. It has a layered structure with the space group of I4/mmm, and with the lattice constants a = 4.069 $AA$ and c = 26.876 $AA$. The in-plane Fe ions construct a square lattice which is close to that of other FeAs-based superconductors, such as REFeAsO (RE = rare earth elements) and (Ba,Sr)Fe_2As_2. However the inter FeAs-layer spacing in the new compound is greatly enlarged. The temperature dependence of resistivity exhibits a weak upturn in the low temperature region, but a metallic behavior was observed above about 60 K. The magnetic susceptibility shows also a non-monotonic behavior. Interestingly, the well-known resistivity anomaly which was discovered in all other parent compounds, such as REFeAsO, (Ba,Sr)Fe_2As_2 and (Sr,Ca,Eu)FeAsF and associated with the Spin-Density-Wave (SDW)/structural transition has not been found in the new system either on the resistivity data or the magnetization data. This could be induced by the large spacing distance between the FeAs-planes, therefore the antiferromagnetic correlation between the moments of Fe ions in neighboring FeAs-layers cannot be established. Alternatively it can also be attributed to the self-doping effect between Fe and Sc ions. The Hall coefficient R_H is negative but strongly temperature dependent in wide temperature region, which indicates the dominance of electrical conduction by electron-like charge carriers and probably a multi-band effect or a spin related scattering effect. It is found that the magnetoresistance cannot be described by the Kohlers rule, which gives further support to above arguments.
We report the temperature dependent x-ray powder diffraction of the FeAs-based superconductors in the range between 300 K and 95 K. In the case of NdOFeAs we have detected the structural phase transition from the tetragonal phase, with P4/nmm space group, to the orthorhombic phase,with Cmma space group, over a broad temperature range from 150 K to 120 K, centered at T0 137K. This transition is reduced, by about 30K, by the internal chemical pressure going from LaOFeAs to NdOFeAs. On the contrary the superconducting critical temperature increases from 27K to 51 K going from LaOFeAs to NdOFeAs doped samples. The FeAs layers in all undoped 1111 and 122 systems suffer a tensile misfit strain. The tensile misfit strain is reduced in 1111 and in 122 samples and at optimum doping the misfit strain is close to zero. This result shows that the normal striped orthorhombic Cmma phase competes with the superconducting tetragonal phase. In the orthorhombic clusters the charges can move only along the stripes in the b direction and are localized by the magnetic interaction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا