Multistage Hypothesis Tests for the Mean of a Normal Distribution


Abstract in English

In this paper, we have developed new multistage tests which guarantee prescribed level of power and are more efficient than previous tests in terms of average sampling number and the number of sampling operations. Without truncation, the maximum sampling numbers of our testing plans are absolutely bounded. Based on geometrical arguments, we have derived extremely tight bounds for the operating characteristic function. To reduce the computational complexity for the relevant integrals, we propose adaptive scanning algorithms which are not only useful for present hypothesis testing problem but also for other problem areas.

Download