Dynamics of the one-dimensional random transverse Ising model with next-nearest-neighbor interactions


Abstract in English

The dynamics of the one-dimensional random transverse Ising model with both nearest-neighbor (NN) and next-nearest-neighbor (NNN) interactions is studied in the high-temperature limit by the method of recurrence relations. Both the time-dependent transverse correlation function and the corresponding spectral density are calculated for two typical disordered states. We find that for the bimodal disorder the dynamics of the system undergoes a crossover from a collective-mode behavior to a central-peak one and for the Gaussian disorder the dynamics is complex. For both cases, it is found that the central-peak behavior becomes more obvious and the collective-mode behavior becomes weaker as $K_{i}$ increase, especially when $K_{i}>J_{i}/2$ ($J_{i}$ and $K_{i}$ are exchange couplings of the NN and NNN interactions, respectively). However, the effects are small when the NNN interactions are weak ($K_{i}<J_{i}/2$).

Download