We study solvable spin chains where either fields or couplings vary linearly in space and create a sandwich-like structure of the ground state. We find that the entanglement entropy between two halves of a chain varies logarithmically with the interface width. After quenching to a homogeneous critical system, the entropy grows logarithmically in time in the XX model, but quadratically in the transverse Ising chain. We explain this behaviour and indicate generalizations to other power laws.
The quantum entanglement $E$ of a bipartite quantum Ising chain is compared with the mutual information $I$ between the two parts after a local measurement of the classical spin configuration. As the model is conformally invariant, the entanglement measured in its ground state at the critical point is known to obey a certain scaling form. Surprisingly, the mutual information of classical spin configurations is found to obey the same scaling form, although with a different prefactor. Moreover, we find that mutual information and the entanglement obey the inequality $Ileq E$ in the ground state as well as in a dynamically evolving situation. This inequality holds for general bipartite systems in a pure state and can be proven using similar techniques as for Holevos bound.
We study a one dimensional quantum XY spin chain driven by a local noisy spin impurity with finite correlation time, along the transverse field direction. We recover the celebrated Zeno crossover and we show that entanglement can be used as a proxy for the heating and strong-measurement regimes. We compute the entanglement entropy of a block of spins and we observe that its velocity spreading decreases at strong dissipation, as a result of the Zeno effect. Upon increasing the correlation time of the noise, the location of the Zeno crossover shifts at stronger dissipation rates opening up a broader heating phase. We offer insight on the mechanisms underlying the dynamics of the entanglement entropy by monitoring different time traces of the local transverse magnetisation profile. Our results aim at starting a complementary viewpoint on the field of dissipative quantum impurities, based on a theoretical quantum information perspective.
We study the entanglement entropy of blocks of contiguous spins in non-periodic (quasi-periodic or more generally aperiodic) critical Heisenberg, XX and quantum Ising spin chains, e.g. in Fibonacci chains. For marginal and relevant aperiodic modulations, the entanglement entropy is found to be a logarithmic function of the block size with log-periodic oscillations. The effective central charge, c_eff, defined through the constant in front of the logarithm may depend on the ratio of couplings and can even exceed the corresponding value in the homogeneous system. In the strong modulation limit, the ground state is constructed by a renormalization group method and the limiting value of c_eff is exactly calculated. Keeping the ratio of the block size and the system size constant, the entanglement entropy exhibits a scaling property, however, the corresponding scaling function may be nonanalytic.
We derive some entanglement properties of the ground states of two classes of quantum spin chains described by the Fredkin model, for half-integer spins, and the Motzkin model, for integer ones. Since the ground states of the two models are known analytically, we can calculate the entanglement entropy, the negativity and the quantum mutual information exactly. We show, in particular, that these systems exhibit long-distance entanglement, namely two disjoint regions of the chains remain entangled even when the separation is sent to infinity, i.e. these systems are not affected by decoherence. This strongly entangled behavior, occurring both for colorf
This review summarizes recent advances in our understanding of anomalous transport in spin chains, viewed through the lens of integrability. Numerical advances, based on tensor-network methods, have shown that transport in many canonical integrable spin chains -- most famously the Heisenberg model -- is anomalous. Concurrently, the framework of generalized hydrodynamics has been extended to explain some of the mechanisms underlying anomalous transport. We present what is currently understood about these mechanisms, and discuss how they resemble (and differ from) the mechanisms for anomalous transport in other contexts. We also briefly review potential transport anomalies in systems where integrability is an emergent or approximate property. We survey instances of anomalous transport and dynamics that remain to be understood.