No Arabic abstract
I describe how the dynamics of galactic disks can be inferred by imaging and spectroscopy. Next I demonstrate that the decomposition of the rotation curves of spiral galaxies into the contributions by the various components of the galaxies is highly degenerate. Constraints on the decomposition can be found by considering implications for the dynamics of the galactic disks. An important diagnostic is the Toomre Q stability parameter which controls the stability of a galactic disk against local Jeans collapse. I also show how the density wave theory of galactic spiral arms can be employed to constrain the mass of a galactic disk. Applying both diagnostics to the example of NGC 2985 and discussing also the implied mass-to-light ratio I demonstrate that the inner parts of the galaxy, where the optical disk resides, are dominated by baryons. When I apply this method to the disks of low surface brightness galaxies, I find unexpectedly high mass-to light ratios. These could be explained by population synthesis models which assume a bottom heavy initial mass function similar to the recently proposed `integrated galactic initial mass function.
In a hierarchical merging scenario, the outer parts of a galaxy are a fossil record of the galaxys early history. Observations of the outer disks and halos of galaxies thus provide a tool to study individual galaxy histories and test formation theories. Locally, an impressive effort has been made to understand the halo of the Milky Way, Andromeda, and M33. However, due to the stochastic nature of halo formation, a better understanding of this process requires a large sample of galaxies with known halo properties. The GHOSTS project (PI: R. de Jong) aims to characterize the halos and outer portions of 14 nearby (D=4-14 Mpc) spiral galaxies using the Hubble Space Telescope. Detection of individual stars in the outer parts of these galaxies enables us to study both the morphological properties of the galaxies, and determine the stars metallicity and age.
In this short write-up, I will concentrate on a few topics of interest. In the 1970s I found very extended HI disks in galaxies such as NGC 5055 and NGC 2841, out to 2 - 2.5 times the Holmberg radius. Since these galaxies are warped, a tilted ring model allows rotation curves to be derived, and evidence for dark matter to be found. The evaluation of the amount of dark matter is hampered by a disk-halo degeneracy, which can possibly be broken by observations of velocity dispersions in both the MgI region and the CaII region.
We describe HST imaging of recent star formation complexes located in the extended UV disk (XUV-disk) component of NGC 5236 (M 83), NGC 5055 (M 63), and NGC 2090. Photometry in four FUV--visible bands permits us to constrain the type of resolved stars and effective age of clusters, in addition to extinction. The preliminary results given herein focus on CMD analysis and clustering properties in this unique star-forming environment.
We use the IRAM Large Program EMPIRE and new high-resolution ALMA data to measure 13CO(1-0)/C18O(1-0) intensity ratios across nine nearby spiral galaxies. These isotopologues of CO are typically optically thin across most of the area in galaxy disks, and this ratio allows us to gauge their relative abundance due to chemistry or stellar nucleosynthesis effects. Resolved 13CO/C18O gradients across normal galaxies have been rare due to the faintness of these lines. We find a mean 13CO/C18O ratio of 6.0$pm$0.9 for the central regions of our galaxies. This agrees well with results in the Milky Way, but differs from results for starburst galaxies (3.4$pm$0.9) and ultraluminous infrared galaxies (1.1$pm$0.4). In our sample, the 13CO/C18O ratio consistently increases with increasing galactocentric radius and decreases with increasing star formation rate surface density. These trends qualitatively agree with expectations for carbon and oxygen isotopic abundance variations due to stellar nucleosynthesis, with a possible effect of fractionation.
The HI and CO components of the interstellar medium (ISM) are usually used to derive the dynamical mass M_dyn of nearby galaxies. Both components become too faint to be used as a tracer in observations of high-redshift galaxies. In those cases, the 158 $mu$m line of atomic carbon [CII] may be the only way to derive M_dyn. As the distribution and kinematics of the ISM tracer affects the determination of M_dyn, it is important to quantify the relative distributions of HI, CO and [CII]. HI and CO are well-characterised observationally, however, for [CII] only very few measurements exist. Here we compare observations of CO, HI, and [CII] emission of a sample of nearby galaxies, drawn from the HERACLES, THINGS and KINGFISH surveys. We find that within R_25, the average [CII] exponential radial profile is slightly shallower than that of the CO, but much steeper than the HI distribution. This is also reflected in the integrated spectrum (global profile), where the [CII] spectrum looks more like that of the CO than that of the HI. For one galaxy, a spectrally resolved comparison of integrated spectra was possible; other comparisons were limited by the intrinsic line-widths of the galaxies and the coarse velocity resolution of the [CII] data. Using high-spectral-resolution SOFIA [CII] data of a number of star forming regions in two nearby galaxies, we find that their [CII] linewidths agree better with those of the CO than the HI. As the radial extent of a given ISM tracer is a key input in deriving M_dyn from spatially unresolved data, we conclude that the relevant length-scale to use in determining M_dyn based on [CII] data, is that of the well-characterised CO distribution. This length scale is similar to that of the optical disk.