No Arabic abstract
According to idealized models, a strong Kerr non-linearity may be used to build optical quantum gates for optical quantum information processing by inducing conditional phase shifts on quantum states. Recently, Shapiro (PRA 73, 062305 (2006)) argued that for a Kerr medium with non-instantaneous but fast response, essentially no phase shift is induced on two-single-photon input states, and thus a quantum gate build from such a medium cannot work. Here we show that a fast response Kerr medium induces some but very little phase shifts on a two-single-photon input state, and it is insufficient for high fidelity quantum computation. We point out that this is caused by the medium imparting spectral entanglement to the input photons. We further show that a way to circumvent this problem and achieve a high fidelity gate, is to engineer the dispersion properties of the medium to give a dominant spectral effect over the non-instantaneous response, in addition to satisfying a phase matching condition.
Optical $chi^{(2)}$ non-linearity can be used for parametric amplification and producing down-converted entangled photon pairs that have broad applications. It is known that weak non-linear media exhibit dispersion and produce a frequency response. It is therefore of interest to know how spectral effects of a strong $chi^{(2)}$ crystal affect the performance. Here we model the spectral effects of the dispersion of a strong $chi^{(2)}$ crystal and illustrate how this affects its ability to perform Bell measurements and influence the performance of a quantum gates that employ such a Bell measurement. We show that a Dyson series expansion of the unitary operator is necessary in general, leading to unwanted spectral entanglement. We identify a limiting situation employing periodic poling, in which a Taylor series expansion is a good approximation and this entanglement can be removed.
Any optical quantum information processing machine would be comprised of fully-characterized constituent devices for both single state manipulations and tasks involving the interaction between multiple quantum optical states. Ideally for the latter, would be an apparatus capable of deterministic optical phase shifts that operate on input quantum states with the action mediated solely by auxiliary signal fields. Here we present the complete experimental characterization of a system designed for optically controlled phase shifts acting on single-photon level probe coherent states. Our setup is based on a warm vapor of rubidium atoms under the conditions of electromagnetically induced transparency with its dispersion properties modified through the use of an optically triggered N-type Kerr non-linearity. We fully characterize the performance of our device by sending in a set of input probe states and measuring the corresponding output via balanced homodyne tomography and subsequently performing the technique of coherent state quantum process tomography. This method provides us with the precise knowledge of how our optical phase shift will modify any arbitrary input quantum state engineered in the mode of the reconstruction.
Qubit readout is an indispensable element of any quantum information processor. In this work, we experimentally demonstrate a non-perturbative cross-Kerr coupling between a transmon and a polariton mode which enables an improved quantum non-demolition (QND) readout for superconducting qubits. The new mechanism uses the same experimental techniques as the standard QND qubit readout in the dispersive approximation, but due to its non-perturbative nature, it maximizes the speed, the single-shot fidelity and the QND properties of the readout. In addition, it minimizes the effect of unwanted decay channels such as the Purcell effect. We observed a single-shot readout fidelity of 97.4% for short 50 ns pulses, and we quantified a QND-ness of 99% for long measurement pulses with repeated single-shot readouts.
Improving the precision of measurements is a significant scientific challenge. The challenge is twofold: first, overcoming noise that limits the precision given a fixed amount of a resource, N, and second, improving the scaling of precision over the standard quantum limit (SQL), 1/sqrt{N}, and ultimately reaching a Heisenberg scaling (HS), 1/N. Here we present and experimentally implement a new scheme for precision measurements. Our scheme is based on a probe in a mixed state with a large uncertainty, combined with a post-selection of an additional pure system, such that the precision of the estimated coupling strength between the probe and the system is enhanced. We performed a measurement of a single photons Kerr non-linearity with an HS, where an ultra-small Kerr phase of around 6 *10^{-8} rad was observed with an unprecedented precision of around 3.6* 10^{-10} rad. Moreover, our scheme utilizes an imaginary weak-value, the Kerr non-linearity results in a shift of the mean photon number of the probe, and hence, the scheme is robust to noise originating from the self-phase modulation.
Few-photon optomechanical effects are not only important physical evidences for understanding the radiation-pressure interaction between photons and mechanical oscillation, but also have wide potential applications in modern quantum technology. Here we study the few-photon optomechanical effects including photon blockade and generation of the Schr{o}dinger cat states under the assistance of a cross-Kerr interaction, which is an inherent interaction accompanied the optomechanical coupling in a generalized optomechanical system. By exactly diagonalizing the generalized optomechanical Hamiltonian and calculating its unitary evolution operator, we find the physical mechanism of the enhancement of photon blockade and single-photon mechanical displacement. The quantum properties in this generalized optomechanical system are studied by investigating the second-order correlation function of the cavity field and calculating the Wigner function and the probability distribution of the rotated quadrature operator for the mechanical mode. We also study the influence of the dissipations on the few-photon optomechanical effects.