Do you want to publish a course? Click here

Geometrodynamics of Spinning Light

145   0   0.0 ( 0 )
 Added by Konstantin Bliokh
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The semiclassical evolution of spinning particles has recently been re-examined in condensed matter physics, high energy physics, and optics, resulting in the prediction of the intrinsic spin Hall effect associated with the Berry phase. A fundamental nature of this effect is related to the spin-orbit interaction and topological monopoles. Here we report a unified theory and a direct observation of two mutual phenomena: a spin-dependent deflection (the spin Hall effect) of photons and the precession of the Stokes vector along the coiled ray trajectory of classical geometrical optics. Our measurements are in perfect agreement with theoretical predictions, thereby verifying the dynamical action of the topological Berry-phase monopole in the evolution of light. These results may have promising applications in nano-optics and can be immediately extrapolated to the evolution of massless particles in a variety of physical systems.



rate research

Read More

It is well known that spin angular momentum of light, and therefore that of photons, is directly related to their circular polarization. Naturally, for totally unpolarized light, polarization is undefined and the spin vanishes. However, for nonparaxial light, the recently discovered transverse spin component, orthogonal to the main propagation direction, is largely independent of the polarization state of the wave. Here we demonstrate, both theoretically and experimentally, that this transverse spin survives even in nonparaxial fields (e.g., tightly focused or evanescent) generated from a totally unpolarized light source. This counterintuitive phenomenon is closely related to the fundamental difference between the degrees of polarization for 2D paraxial and 3D nonparaxial fields. Our results open an avenue for studies of spin-related phenomena and optical manipulation using unpolarized light.
We study the transverse spin structure of the squeezed limit of the three-point energy correlator, $langle mathcal{E}(vec n_1) mathcal{E}(vec n_2) mathcal{E}(vec n_3) rangle$. To describe its all orders perturbative behavior, we develop the light-ray operator product expansion (OPE) in QCD. At leading twist the iterated OPE of $mathcal{E}(vec n_i)$ operators closes onto light-ray operators $mathbb{O}^{[J]}(vec n)$ with spin $J$, and transverse spin $j=0,2$. We compute the $mathcal{E}(vec n_1) mathcal{E}(vec n_2)$, $mathcal{E}(vec n_1) mathbb{O}^{[J]}(vec n_2) $ and $mathbb{O}^{[J_1]}(vec n_1) mathbb{O}^{[J_2]}(vec n_2) $ OPEs as analytic functions of $J$, which allows for the description of arbitrary squeezed limits of $N$-point correlators in QCD. We use these results with $J=3$ to reproduce the perturbative expansion in the squeezed limit of the three-point correlator, as well as to resum the leading twist singular structure for both quark and gluon jets, including transverse spin contributions, as required for phenomenological applications. Finally, we briefly comment on the transverse spin structure at higher twists, and show that to all orders in the twist expansion the highest transverse spin contributions are universal between quark and gluon jets, and are descendants of the leading twist transverse spin-2 operator, allowing their resummation into a simple two-dimensional Euclidean conformal block. Due to the general applicability of our results to arbitrary correlation functions of energy flow operators, we anticipate that they can be widely applied to improving our understanding of jet substructure at the LHC.
A two-level medium, described by the Maxwell-Bloch (MB) system, is engraved by establishing a standing cavity wave with a linearly polarized electromagnetic field that drives the medium on both ends. A light pulse, polarized along the other direction, then scatters the medium and couples to the cavity standing wave by means of the population inversion density variations. We demonstrate that control of the applied amplitudes of the grating field allows to stop the light pulse and to make it move backward (eventually to drive it freely). A simplified limit model of the MB system with variable boundary driving is obtained as a discrete nonlinear Schroedinger equation with tunable external potential. It reproduces qualitatively the dynamics of the driven light pulse.
The topological structure associated with the branchpoint singularity around an exceptional point (EP) provides new tools for controlling the propagation of electromagnetic waves and their interaction with matter. To date, observation of EPs in light-matter interactions has remained elusive and has hampered further progress in applications of EP physics. Here, we demonstrate the emergence of EPs in the electrically controlled interaction of light with a collection of organic molecules in the terahertz regime at room temperature. We show, using time-domain terahertz spectroscopy, that the intensity and phase of terahertz pulses can be controlled by a gate voltage which drives the device across the EP. This fully electrically-tuneable system allows reconstructing the Riemann surface associated with the complex energy landscape and provides a topological control of light by tuning the loss-imbalance and frequency detuning of interacting modes. We anticipate that our work could pave the way for new means of dynamic control on the intensity and phase of terahertz field, developing topological optoelectronics, and studying the manifestations of EP physics in the quantum correlations of the light emitted by a collection of emitters coupled to resonators.
We examine, both experimentally and theoretically, an interaction of tightly focused polarized light with a slit on a metal surface supporting plasmon-polariton modes. Remarkably, this simple system can be highly sensitive to the polarization of the incident light and offers a perfect quantum-weak-measurement tool with a built-in post-selection in the plasmon-polariton mode. We observe the plasmonic spin Hall effect in both coordinate and momentum spaces which is interpreted as weak measurements of the helicity of light with real and imaginary weak values determined by the input polarization. Our experiment combines advantages of (i) quantum weak measurements, (ii) near-field plasmonic systems, and (iii) high-numerical aperture microscopy in employing spin-orbit interaction of light and probing light chirality.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا