Do you want to publish a course? Click here

Ultrarelativistic Electron-Positron Plasma

185   0   0.0 ( 0 )
 Added by Markus H. Thoma
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

Ultrarelativistic electron-positron plasmas can be produced in high-intensity laser fields and play a role in various astrophysical situations. Their properties can be calculated using QED at finite temperature. Here we will use perturbative QED at finite temperature for calculating various important properties, such as the equation of state, dispersion relations of collective plasma modes of photons and electrons, Debye screening, damping rates, mean free paths, collision times, transport coefficients, and particle production rates, of ultrarelativistic electron-positron plasmas. In particular, we will focus on electron-positron plasmas produced with ultra-strong lasers.



rate research

Read More

316 - Markus H. Thoma 2009
Ultrarelativistic electron-positron plasmas can be produced in high-intensity laser fields and play a role in various astrophysical situations. Their properties can be calculated using QED at finite temperature. Here we will use perturbative QED at finite temperature for calculating various important properties, such as the equation of state, dispersion relations of collective plasma modes of photons and electrons, Debye screening, damping rates, mean free paths, collision times, transport coefficients, and particle production rates, of ultrarelativistic electron-positron plasmas. In particular, we will focus on electron-positron plasmas produced with ultra-strong lasers.
273 - Markus H. Thoma 2005
An error in the calculation of the Coulomb coupling parameter of the quark-gluon plasma is corrected.
103 - Markus H. Thoma 2005
The quark-gluon plasma, possibly created in ultrarelativistic heavy-ion collisions, is a strongly interacting many-body parton system. By comparison with strongly coupled electromagnetic plasmas (classical and non-relativistic) it is concluded that the quark-gluon plasma could be in the liquid phase. As an example for a strongly coupled plasma, complex plasmas, which show liquid and even solid phases, are discussed briefly. Furthermore, methods based on correlation functions for confirming and investigating the quark-gluon-plasma liquid are presented. Finally, consequences of the strong coupling, in particular a cross section enhancement in accordance with experimental observations at RHIC, are discussed.
247 - Markus H. Thoma 2008
Ultra-relativistic electromagnetic plasmas can be used for improving our understanding of the quark-gluon plasma. In the weakly coupled regime both plasmas can be described by transport theoretical and quantum field theoretical methods leading to similar results for the plasma properties (dielectric tensor, dispersion relations, plasma frequency, Debye screening, transport coefficients, damping and particle production rates). In particular, future experiments with ultra-relativistic electron-positron plasmas in ultra-strong laser fields might open the possibility to test these predictions, e.g. the existence of a new fermionic plasma wave (plasmino). In the strongly coupled regime electromagnetic plasmas such as complex plasmas can be used as models or at least analogies for the quark-gluon plasma possibly produced in relativistic heavy-ion experiments. For example, pair correlation functions can be used to investigate the equation of state and cross section enhancement for parton scattering can be explained.
We discuss recent experimental results concerning the cross section ratio of positron over electron elastic scattering on protons, and compare with the predictions of a pre-existent calculation. The deviation from unity of this ratio, $i.e.$, a charge asymmetry different from zero, is the signature of contributions beyond the Born approximation. After reviewing the published results, we compare the elastic data to a calculation which includes the diagram corresponding to two-photon exchange. It turns out that all the data on the cross section ratio, in the limit of their precision, do not show evidence of enhanced two-photon contribution beyond the expected percent level. Our results confirm that experimental evidence for a large contribution of two-photon exchange is not yet found.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا