Do you want to publish a course? Click here

Structural phase stability and Magnetism in Co2FeO4 spinel oxide

90   0   0.0 ( 0 )
 Added by R.N Bhowmik Dr
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report a correlation between structural phase stability and magnetic properties of Co2FeO4 spinel oxide. We employed mechanical alloying and subsequent annealing to obtain the desired samples. The particle size of the samples changes from 25 nm to 45 nm. The structural phase separation of samples, except sample annealed at 9000C, into Co rich and Fe rich spinel phase has been examined from XRD spectrum, SEM picture, along with EDAX spectrum, and magnetic measurements. The present study indicated the ferrimagnetic character of Co2FeO4, irrespective of structural phase stability. The observation of mixed ferrimagnetic phases, associated with two Curie temperatures at TC1 and TC2 (>TC1), respectively, provides the additional support of the splitting of single cubic spinel phase in Co2FeO4 spinel oxide.

rate research

Read More

112 - Dongwon Shin , Zi-Kui Liu 2007
Phase stabilities of Hf-Si-O and Zr-Si-O have been studied with first-principles and thermodynamic modeling. From the obtained thermodynamic descriptions, phase diagrams pertinent to thin film processing were calculated. We found that the relative stability of the metal silicates with respect to their binary oxides plays a critical role in silicide formation. It was observed that both the HfO$_2$/Si and ZrO$_2$/Si interfaces are stable in a wide temperature range and silicide may form at low temperatures, partially at the HfO$_2$/Si interface.
The incompatibility between defect-tolerance and structural stability is a severe issue hindering the wide application of high-efficiency solar cells. Usually, covalent/polar semiconductors with prototype of Si/CdTe crystals exhibit great structural stability owing to their compactly composed tetrahedral building blocks, but present extremely poor defect-tolerance due to the similar electronegativity of component elements. On the contrary, ionic semiconductors, such as perovskite series, always exhibit benign electronic properties of intrinsic defects owing to the great disparity of electronegativity between anions and cations, but are structurally unstable because of the sparsely composed octahedral building blocks supported by large cations. Combining the stable framework of covalent semiconductors and benign defects of ionic compounds, we find that HgX2S4 (X=In, Sc and Y) spinel semiconductors possess both the merits. The tightly combined tetrahedral and octahedral blocks ensures the structural stability, and the band edge of ionic characteristic, which is mainly dominated by Hg-6s and S-3p orbitals for conduction band minimum (CBM) and valence band maximum (VBM), respectively, makes HgX2S4 defect-tolerant. The prominent downward bending of CBM caused by spatially spreading Hg-6s spherical orbital not only induces a suitable optical band gap which is often too large in ionic compounds, but also promotes the formation and transport of n-type carriers. This study presents that Hg-based chalcogenide spinels are promising candidates for high-efficiency solar cells, and suggests that adopting cations with delocalized orbitals under the framework of spinel crystal is an alternative way for synthesizing the stable and defect-tolerant photovoltaic materials.
In the $AB_4Q_8$ lacunar spinels, the electronic structure is described on the basis of inter- and intra-cluster interactions of tetrahedral $B_4$ clusters, and tuning these can lead to myriad fascinating electronic and magnetic ground states. In this work, we employ magnetic measurements, synchrotron X-ray and neutron scattering, and first-principles electronic structure calculations to examine the coupling between structural and magnetic phase evolution in GaMo$_4$Se$_8$, including the emergence of a skyrmionic regime in the magnetic phase diagram. We show that the competition between two distinct Jahn-Teller distortions of the room temperature cubic $Foverline{4}3m$ structure leads to the coexistence of the ground state $R3m$ phase and a metastable $Imm2$ phase. The magnetic properties of these two phases are computationally shown to be very different, with the $Imm2$ phase exhibiting uniaxial ferromagnetism and the $R3m$ phase hosting a complex magnetic phase diagram including equilibrium Neel--type skyrmions stable from nearly $T$ = 28 K down to $T$ = 2 K, the lowest measured temperature. The large change in magnetic behavior induced by a small structural distortion reveals that GaMo$_4$Se$_8$ is an exciting candidate material for tuning unconventional magnetic properties $via$ mechanical means.
Magnetic insulators are important materials for a range of next generation memory and spintronic applications. Structural constraints in this class of devices generally require a clean heterointerface that allows effective magnetic coupling between the insulating layer and the conducting layer. However, there are relatively few examples of magnetic insulators which can be synthesized with surface qualities that would allow these smooth interfaces and precisely tuned interfacial magnetic exchange coupling which might be applicable at room temperature. In this work, we demonstrate an example of how the configurational complexity in the magnetic insulator layer can be used to realize these properties. The entropy-assisted synthesis is used to create single crystal (Mg0.2Ni0.2Fe0.2Co0.2Cu0.2)Fe2O4 films on substrates spanning a range of strain states. These films show smooth surfaces, high resistivity, and strong magnetic responses at room temperature. Local and global magnetic measurements further demonstrate how strain can be used to manipulate magnetic texture and anisotropy. These findings provide insight into how precise magnetic responses can be designed using compositionally complex materials that may find application in next generation magnetic devices.
The structural and magnetic properties of the hexagonal four-layer form of SrMnO$_3$ have been investigated by combining magnetization measurements, electron diffraction and high-resolution synchrotron X-ray and neutron powder diffraction. Below 350K, there is subtle structural phase transition from hexagonal symmetry (space group $P6_3/mmc$) to orthorhombic symmetry (space group $C222_1$) where the hexagonal metric is preserved. The second-order phase transition involves a slight tilting of the corner-sharing Mn$_{2}$O$_{9}$ units composed of 2 face-sharing MnO$_6$ octahedra and the associated displacement of Sr$^{2+}$ cations. The phase transition is described in terms of symmetry-adapted displacement modes of the high symmetry phase. Upon further cooling, long range magnetic order with propagation vector $mathbf{k}=(0,0,0)$ sets in below 300K. The antiferromagnetic structure, analyzed using representation theory, shows a considerably reduced magnetic moment indicating the crucial role played by direct exchange between Mn centers of the Mn$_{2}$O$_{9}$ units.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا