A Global Energetic Model for Microquasars (GEMM): A rich and consistent disk+jet solution


Abstract in English

Based on a dynamical model describing how stationary, powerful and self-collimated jets are being launched from a magnetized disk, we build a consistent disk+jet microquasar picture. Our disk is a new type of disk solution called the Jet Emitting Disk (JED), and whose characteristics are directly constrained by the presence of a jet. We assume a one-temperature plasma with thermal particles only. By solving the radiative equilibrium of the disk, we obtain three branches of solutions, a hot and a cold ones (both thermally stable), and an intermediate one, thermally unstable. The hot solution possess the global observed characteristics of what has been often called a corona located above the inner disk region. We present this new disk solution, and how the radiative equilibrium is computed. We discuss the richness of the solution, and show the ability of the model to reproduce an observed spectral energy distribution of XTE J1118+480 with reasonable parameters. We finally outline some perspectives of the model.

Download