Magnetization switching due to a current-pulse in symmetric and asymmetric spin valves is studied theoretically within the macrospin model. The switching process and the corresponding switching parameters are shown to depend significantly on the pulse duration and also on the interplay of the torques due to spin transfer and external magnetic field. This interplay leads to peculiar features in the corresponding phase diagram. These features in standard spin valves, where the spin transfer torque stabilizes one of the magnetic configurations (either parallel or antiparallel) and destabilizes the opposite one, differ from those in nonstandard (asymmetric) spin valves, where both collinear configurations are stable for one current orientation and unstable for the opposite one. Following this we propose a scheme of ultrafast current-induced switching in nonstandard spin valves, based on a sequence of two current pulses.