We study the modification of the multiplicity distributions in MLLA due to the presence of a QCD medium. The medium is introduced though a multiplicative constant ($f_{med}$) in the soft infrared parts of the kernels of QCD evolution equations. Using the asymptotic ansatz for quark and gluons mean multiplicities $<n_G>=e^{gamma y}$ and $<n_Q>=r^{-1}e^{gamma y}$ respectively, we study two cases: fixed $gamma$ as previously considered in the literature, and fixed $alpha_s$. We find opposite behaviors of the dispersion of the multiplicity distributions with increasing $f_{med}$ in both cases. For fixed $gamma$ the dispersion decreases, while for fixed $alpha_s$ it increases.