Do you want to publish a course? Click here

The structure of the protoplanetary disk surrounding three young intermediate mass stars. II. Spatially resolved dust and gas distribution

178   0   0.0 ( 0 )
 Added by Davide Fedele
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

[Abridged] We present the first direct comparison of the distribution of the gas, as traced by the [OI] 6300 AA emission, and the dust, as traced by the 10 micron emission, in the protoplanetary disk around three intermediate-mass stars: HD 101412, HD 135344 B and HD 179218. N-band visibilities were obtained with VLTI/MIDI. Simple geometrical models are used to compare the dust emission to high-resolution optical spectra in the 6300 AA [OI] line of the same targets. The disks around HD 101412 and HD 135344 B appear strongly flared in the gas, but self-shadowed in the dust beyond ~ 2 AU. In both systems, the 10 micron emission is rather compact (< 2 AU) while the [OI] brightness profile shows a double peaked structure. The inner peak is strongest and is consistent with the location of the dust, the outer peak is fainter and is located at 5-10 AU. Spatially extended PAH emission is found in both disks. The disk around HD 179218 is flared in the dust. The 10 micron emission emerges from a double ring-like structure with the first ring peaking at ~ 1 AU and the second at ~ 20 AU. No dust emission is detected between ~ 3 -- 15 AU. The oxygen emission seems also to come from a flared structure, however, the bulk of this emission is produced between ~ 1 -- 10 AU. This could indicate a lack of gas in the outer disk or could be due to chemical effects which reduce the abundance of OH -- the parent molecule of the observed [OI] emission -- further away from the star. The three systems, HD 179218, HD 135344 B and HD 101412, may form an evolutionary sequence: the disk initially flared becomes flat under the combined action of gas-dust decoupling, grain growth and dust settling.



rate research

Read More

137 - G. van der Plas 2008
We present high spectral resolution optical spectra of three young intermediate mass stars, in all of which we spectrally resolve the 6300 Angstrom [OI] emission line. Two of these have a double peaked line profile. We fit these data with a simple model of the [OI] emission caused by photo-dissociation of OH molecules in the upper layer of a circumstellar disk by stellar UV radiation and thus translate the Doppler broadened [OI] emission profile into an amount of emission as a function of distance from the central star. The resulting spectra are in agreement with the expected disk shapes as derived from their spectral energy distribution. We find evidence for shadowing by an inner rim in the disk surrounding HD101412 and see a flaring disk structure in HD179218 while the [OI] spectrum of HD135344 is more complex. The [OI] emission starts for all three targets at velocities corresponding to their dust sublimation radius and extends up to radii of 10 -- 90 AU. This shows that this method can be a valuable tool in the future investigation of circumstellar disks.
We report the codiscovery of the spatially-resolved dust disk of the Vega-like star HR 4796A. Images of the thermal dust emission at $lambda = 18 mu$m show an elongated structure approximately 200 AU in diameter surrounding the central A0V star. The position angle of the disk, $30^{circ} pm 10^{circ}$, is consistent to the position angle of the M companion star, $225^{circ}$, suggesting that the disk-binary system is being seen nearly along its orbital plane. The surface brightness distribution of the disk is consistent with the presence of an inner disk hole of approximately 50 AU radius, as was originally suggested by Jura et al. on the basis of the infrared spectrum. HR 4796 is a unique system among the Vega-like or $beta$ Pictoris stars in that the M star companion (a weak-emission T Tauri star) shows that the system is relatively young, $sim 8 pm 3$ Myr. The inner disk hole may provide evidence for coagulation of dust into larger bodies on a timescale similar to that suggested for planet formation in the solar system.
We present a detailed analysis of the radial distribution of dust properties in the SINGS sample, performed on a set of UV, IR and HI surface brightness profiles, combined with published molecular gas profiles and metallicity gradients. The internal extinction, derived from the TIR-to-FUV luminosity ratio, decreases with radius, and is larger in Sb-Sbc galaxies. The TIR-to-FUV ratio correlates with the UV spectral slope beta, following a sequence shifted to redder UV colors with respect to that of starbursts. The star formation history (SFH) is identified as the main driver of this departure. We have also derived radial profiles of the total dust mass surface density, the fraction of the dust mass contributed by PAHs, the fraction of the dust mass heated by very intense starlight and the intensity of the radiation field heating the grains. The dust profiles are exponential, their radial scale-length being constant from Sb to Sd galaxies (only ~10% larger than the stellar scale-length). Many S0/a-Sab galaxies have central depressions in their dust radial distributions. The PAH abundance increases with metallicity for 12+log(O/H)<9, and at larger metallicities the trend flattens and even reverses, with the SFH being a plausible underlying driver for this behavior. The dust-to-gas ratio is also well correlated with metallicity and therefore decreases with galactocentric radius.
Spatial distribution and growth of dust in a clumpy protoplanetary disk subject to vigorous gravitational instability and fragmentation is studied numerically with sub-au resolution using the FEOSAD code. Hydrodynamics equations describing the evolution of self-gravitating and viscous protoplanetary disks in the thin-disk limit were modified to include a dust component consisting of two parts: sub-micron-sized dust and grown dust with a variable maximum radius. The conversion of small to grown dust, dust growth, friction of dust with gas, and dust self-gravity were also considered. We found that the disk appearance is notably time-variable with spiral arms, dusty rings, and clumps, constantly forming, evolving, and decaying. As a consequence, the total dust-to-gas mass ratio is highly non-homogeneous throughout the disk extent, showing order-of-magnitude local deviations from the canonical 1:100 value. Gravitationally bound clumps formed through gravitational fragmentation have a velocity pattern that deviates notably from the Keplerian rotation. Small dust is efficiently converted into grown dust in the clump interiors, reaching a maximum radius of several decimeters. Concurrently, grown dust drifts towards the clump center forming a massive compact central condensation (70-100 $M_oplus$). We argue that protoplanets may form in the interiors of inward migrating clumps before they disperse through the action of tidal torques. We foresee the formation of protoplanets at orbital distances of several tens of au with initial masses of gas and dust in the protoplanetary seed in the (0.25-1.6) $M_{rm Jup}$ and (1.0-5.5) $M_oplus$ limits, respectively. The final masses of gas and dust in the protoplanets may however be much higher due to accretion from surrounding massive metal-rich disks/envelopes.
We present ALMA observations of the $98.5~mathrm{GHz}$ dust continuum and the $mathrm{^{13}CO}~J = 1 - 0$ and $mathrm{C^{18}O}~J = 1 - 0$ line emissions of the protoplanetary disk associated with HD~142527. The $98.5~mathrm{GHz}$ continuum shows a strong azimuthal-asymmetric distribution similar to that of the previously reported $336~mathrm{GHz}$ continuum, with a peak emission in dust concentrated region in the north. The disk is optically thin in both the $98.5~mathrm{GHz}$ dust continuum and the $mathrm{C^{18}O}~J = 1 - 0$ emissions. We derive the distributions of gas and dust surface densities, $Sigma_mathrm{g}$ and $Sigma_mathrm{d}$, and the dust spectral opacity index, $beta$, in the disk from ALMA Band 3 and Band 7 data. In the analyses, we assume the local thermodynamic equilibrium and the disk temperature to be equal to the peak brightness temperature of $mathrm{^{13}CO}~J = 3 - 2$ with a continuum emission. The gas-to-dust ratio, $mathrm{G/D}$, varies azimuthally with a relation $mathrm{G/D} propto Sigma_mathrm{d}^{-0.53}$, and $beta$ is derived to be $approx 1$ and $approx 1.7$ in the northern and southern regions of the disk, respectively. These results are consistent with the accumulation of larger dust grains in a higher pressure region. In addition, our results show that the peak $Sigma_mathrm{d}$ is located ahead of the peak $Sigma_mathrm{g}$. If the latter corresponds to a vortex of high gas pressure, the results indicate that the dust is trapped ahead of the vortex, as predicted by some theoretical studies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا