No Arabic abstract
We perform Halo Occupation Distribution (HOD) modeling to interpret small-scale and intermediate-scale clustering of 35,000 luminous early-type galaxies and their cross-correlation with a reference imaging sample of normal L* galaxies in the Sloan Digital Sky Survey. The modeling results show that most of these luminous red galaxies (LRGs) are central galaxies residing in massive halos of typical mass M ~ a few times 10^13 to 10^14 Msun/h, while a few percent of them have to be satellites within halos in order to produce the strong auto-correlations exhibited on smaller scales. The mean luminosity Lc of central LRGs increases with the host halo mass, with a rough scaling relation of Lc propto M^0.5. The halo mass required to host on average one satellite LRG above a luminosity threshold is found to be about 10 times higher than that required to host a central LRG above the same threshold. We find that in massive halos the distribution of L* galaxies roughly follows that of the dark matter and their mean occupation number scales with halo mass as M^1.5. The HOD modeling results also allows for an intuitive understanding of the scale-dependent luminosity dependence of the cross-correlation between LRGs and L_* galaxies. Constraints on the LRG HOD provide tests to models of formation and evolution of massive galaxies, and they are also useful for cosmological parameter investigations. In one of the appendices, we provide LRG HOD parameters with dependence on cosmology inferred from modeling the two-point auto-correlation functions of LRGs.
We present a clustering analysis of near ultraviolet (NUV) - optical color selected luminosity bin samples of green valley galaxies. These galaxy samples are constructed by matching the Sloan Digital Sky Survey Data Release 7 with the latest Galaxy Evolution Explorer source catalog which provides NUV photometry. We present cross-correlation function measurements and determine the halo occupation distribution of these transitional galaxies using a new multiple tracer analysis technique. We extend the halo-occupation formalism to model the cross-correlation function between a galaxy sample of interest and multiple tracer populations simultaneously. This method can be applied to commonly used luminosity threshold samples as well as to color and luminosity bin selected galaxy samples, and improves the accuracy of clustering analyses for sparse galaxy populations. We confirm the previously observed trend that red galaxies reside in more massive halos and are more likely to be satellite galaxies than average galaxies of similar luminosity. While the change in central galaxy host mass as a function of color is only weakly constrained, the satellite fraction and characteristic halo masses of green satellite galaxies are found to be intermediate between those of blue and red satellite galaxies.
We model the luminosity-dependent projected two-point correlation function of DEEP2 (z~1) and SDSS (z~0) galaxies within the Halo Occupation Distribution (HOD) framework. At both epochs, there is a tight correlation between central galaxy luminosity and halo mass, with the slope and scatter decreasing for larger halo masses, and the fraction of satellite galaxies decreasing at higher luminosity. Central L* galaxies reside in halos a few times more massive at z~1 than at z~0. We find little evolution in the relation between mass scales of host halos for central galaxies and satellite galaxies above the same luminosity threshold. Combining these HOD results with theoretical predictions of the typical growth of halos, we establish an evolutionary connection between the galaxy populations at the two redshifts by linking z~0 central galaxies to z~1 central galaxies that reside in their progenitor halos, which enables us to study the evolution of galaxies as a function of halo mass. We find that the stellar mass growth of galaxies depends on halo mass. On average, the majority of the stellar mass in central galaxies residing in z~0 low mass halos (~5x10^11 Msun/h) and only a small fraction of the stellar mass in central galaxies of high mass halos (~10^13 Msun/h) result from star formation between z~1 and z~0. In addition, the mass scale of halos where the star formation efficiency reaches a maximum is found to shift toward lower mass with time. Future work can combine HOD modeling of the clustering of galaxies at different redshifts with the assembly history and dynamical evolution of dark matter halos. This can lead to an understanding of the stellar mass growth due to both mergers and star formation as a function of host halo mass and provide powerful tests of galaxy formation theories. (Abridged).
We investigate the clustering of Lyman-break galaxies (LBGs) at $zsim4$. Using the hierarchical galaxy formation model GALFORM, we predict, for the first time using a semi-analytical model with feedback from active galactic nuclei (AGN), the angular correlation function (ACF) of LBGs and find agreement within $3,sigma$ with new measurements of the ACF from surveys including the Hubble eXtreme Deep Field (XDF) and CANDELS field. Our simulations confirm the conclusion reached using independent models that although the predicted ACFs reproduce the trend of increased clustering with luminosity, the dependence is less strong than observed. We find that for the detection limits of the XDF field central LBGs at $zsim 4$ predominantly reside in haloes of mass $sim 10^{11}-10^{12}h^{-1}M_{rm odot}$ and that satellites reside in larger haloes of mass $sim 10^{12}-10^{13}h^{-1}M_{rm odot}$. The model predicts fewer bright satellite LBGs at $zsim4$ than is inferred from measurements of the ACF at small scales. By analysing the halo occupation distribution (HOD) predicted by the model, we find evidence that AGN feedback affects the HOD of central LBGs in massive haloes. This is a new high-redshift test of this important feedback mechanism. We investigate the effect of photometric errors in the observations on the ACF predictions. We find that the observational uncertainty in the galaxy luminosity reduces the clustering amplitude and that this effect increases towards faint galaxies, particularly on small scales. To compare properties of model with observed LBGs this uncertainty must be considered.
We present the clustering properties and halo occupation distribution (HOD) modelling of very low redshift, hard X-ray-detected active galactic nuclei (AGN) using cross-correlation function measurements with Two-Micron All Sky Survey galaxies. Spanning a redshift range of $0.007 < z < 0.037$, with a median $z=0.024$, we present a precise AGN clustering study of the most local AGN in the Universe. The AGN sample is drawn from the SWIFT/BAT 70-month and INTEGRAL/IBIS eight year all-sky X-ray surveys and contains both type I and type II AGN. We find a large-scale bias for the full AGN sample of $b=1.04^{+0.10}_{-0.11}$, which corresponds to a typical host dark matter halo mass of $M_{rm h}^{rm typ}=12.84^{+0.22}_{-0.30},h^{-1} M_{odot}$. When split into low and high X-ray luminosity and type I and type II AGN subsamples, we detect no statistically significant differences in the large-scale bias parameters. However, there are differences in the small-scale clustering which are reflected in the full HOD model results. We find that low and high X-ray luminosity AGN, as well as type I and type II AGN, occupy dark matter haloes differently, with 3.4$sigma$ and 4.0$sigma$ differences in their mean halo masses, respectively, when split by luminosity and type. The latter finding contradicts a simple orientation-based AGN unification model. As a by-product of our cross-correlation approach, we also present the first HOD model of 2MASS galaxies.
This paper studies the relative spatial distribution of red-sequence and blue-cloud galaxies, and their relation to the dark matter distribution in the COMBO-17 survey as function of scale down to z~1. We measure the 2nd-order auto- and cross-correlation functions of galaxy clustering and express the relative biasing by using aperture statistics. Also estimated is the relation between the galaxies and the dark matter distribution exploiting galaxy-galaxy lensing (GGL). All observables are further interpreted in terms of a halo model. To fully explain the galaxy clustering cross-correlation function with a halo model, we need to introduce a new parameter,R, that describes the statistical relation between numbers of red and blue galaxies within the same halo. We find that red and blue galaxies are clearly differently clustered, a significant evolution of the relative clustering with redshift was not found. There is evidence for a scale-dependence of relative biasing. The relative clustering, the GGL and, with some tension, the galaxy numbers can be explained consistently within a halo model. For the cross-correlation function one requires a HOD variance that becomes Poisson even for relatively small occupancy numbers. For our sample, this rules out with high confidence a Poisson satellite scenario as found in semi-analytical models. Red galaxies have to be concentrated towards the halo centre, either by a central red galaxy or by a concentration parameter above that for dark matter.The value of R depends on the presence or absence of central galaxies: If no central galaxies or only red central galaxies are allowed, R is consistent with zero, whereas a positive correlation $R=+0.5pm0.2$ is needed if both blue and red galaxies can have central galaxies.[ABRIDGED]