No Arabic abstract
We present the results from a study of the X-ray variability and the near-IR to X-ray spectral energy distribution of four low-luminosity, Seyfert 1 galaxies. We compared their variability amplitude and broad band spectrum with those of more luminous AGN in order to investigate whether accretion in low-luminosity AGN operates as in their luminous counterparts. We used archival XMM-Newton and, in two cases, ASCA data to estimate their X-ray variability amplitude and determine their X-ray spectral shape and luminosity. We also used archival HST data to measure their optical nuclear luminosity, and near-IR measurements from the literature, in order to construct their near-IR to X-ray spectra. The X-ray variability amplitude of the four Seyferts is what one would expect, given their black hole masses. Their near-IR to X-ray spectrum has the same shape as the spectrum of quasars which are 10^2-10^5 times more luminous. The objects in our sample are optically classified as Seyfert 1-1.5. This implies that they host a relatively unobscured AGN-like nucleus. They are also of low luminosity and accrete at a low rate. They are therefore good candidates to detect radiation from an inefficient accretion process. However, our results suggest that they are similar to AGN which are 10^2-10^5 times more luminous. The combination of a radiative efficient accretion disc plus an X-ray producing hot corona may persist at low accretion rates as well.
The rapid and seemingly random fluctuations in X-ray luminosity of Seyfert galaxies provided early support for the standard model in which Seyferts are powered by a supermassive black hole fed from an accretion disc. However, since EXOSAT there has been little opportunity to advance our understanding of the most rapid X-ray variability. Observations with XMM-Newton have changed this. We discuss some recent results obtained from XMM-Newton observations of Seyfert 1 galaxies. Particular attention will be given to the remarkable similarity found between the timing properties of Seyferts and black hole X-ray binaries, including the power spectrum and the cross spectrum (time delays and coherence), and their implications for the physical processes at work in Seyferts.
The bright, soft X-ray spectrum Seyfert 1 galaxies Ark 564 and Ton S180 were monitored for 35 days and 12 days with ASCA and RXTE (and EUVE for Ton S180). The short time scale (hours-days) variability patterns were very similar across energy bands, with no evidence of lags between any of the energy bands studied. The fractional variability amplitude was almost independent of energy band. It is difficult to simultaneously explain soft Seyferts stronger variability, softer spectra, and weaker energy-dependence of the variability relative to hard Seyferts. The soft and hard band light curves diverged on the longest time scales probed, consistent with the fluctuation power density spectra that showed relatively greater power on long time scales in the softest bands. The simplest explanation is that a relatively hard, rapidly-variable component dominates the total X-ray spectrum and a slowly-variable soft excess is present in the lowest energy channels of ASCA. Although it would be natural to identify the latter with an accretion disk and the former with a corona surrounding it, a standard thin disk could not get hot enough to radiate significantly in the ASCA band, and the observed variability time scales are much too short. The hard component may have a more complex shape than a pure power-law. The most rapid factor of 2 flares and dips occurred within ~1000 sec in Ark 564 and a bit more slowly in Ton S180. The speed of the luminosity changes rules out viscous or thermal processes and limits the size of the individual emission regions to <~15 Schwarzschild radii (and probably much less), that is, to either the inner disk or small regions in a corona.
Seyfert 1.8/1.9 are sources showing weak broad H-alpha components in their optical spectra. We aim at testing whether Seyfert 1.8/1.9 have similar properties at UV and X-ray wavelengths to Seyfert 2. We use the 15 Seyfert 1.8/1.9 in the Veron Cetty and Veron catalogue with public data available from the Chandra and/or XMM-Newton archives at different dates, with timescales between observations ranging from days to years. Our results are homogeneously compared with a previous work using the same methodology applied to a sample of Seyfert 2 (Hernandez-Garcia et al. 2015). X-ray variability is found in all 15 nuclei over the aforementioned ranges of timescales. The main variability pattern is related to intrinsic changes in the sources, which are observed in ten nuclei. Changes in the column density are also frequent, as they are observed in six nuclei, and variations at soft energies, possibly related to scattered nuclear emission, are detected in six sources. X-ray intraday variations are detected in six out of the eight studied sources. Variations at UV frequencies are detected in seven out of nine sources. A comparison between the samples of Seyfert 1.8/1.9 and 2 shows that, even if the main variability pattern is due to intrinsic changes of the sources in the two families, these nuclei exhibit different variability properties in the UV and X-ray domains. In particular, variations in the broad X-ray band on short time-scales (days/weeks), and variations in the soft X-rays and UV on long time-scales (months/years) are detected in Seyfert 1.8/1.9 but not in Seyfert 2. Overall, we suggest that optically classified Seyfert 1.8/1.9 should be kept separated from Seyfert 2 galaxies in UV/X-ray studies of the obscured AGN population because their intrinsic properties might be different.
Narrow-line Seyfert 1 galaxies (NLS1s) is one of the few classes of active galactic nuclei (AGN) harboring powerful relativistic jets and detected in $gamma$ rays. NLS1s are well-known X-ray sources. While in non-jetted sources the origin of this X-ray emission may be a hot corona surrounding the accretion disk, in jetted objects, especially beamed ones, the contribution of corona and relativistic jet is difficult to disentangle without a proper sampling of the hard X-ray emission. For this reason, we observed with textit{NuSTAR} the first four NLS1s detected at high energy $gamma$ rays. These data, along with textit{XMM-Newton} and textit{Swift/XRT} observations, confirmed that X rays originate both in the jet and in the accretion disk corona. Time variability in hard X rays furthermore suggests that, as observed in flat-spectrum radio quasars, the dissipation region during flares could change its position from source to source, and it can be located both inside and outside the broad-line region. We find that jetted NLS1s, and other blazars as well, seem not to follow the classical fundamental plane of black hole activity, which therefore should be used as a black hole mass estimator in blazars with extreme care only. Our results strengthen the idea according to which $gamma$-NLS1s are smaller and younger version of flat-spectrum radio quasars, in which both a Seyfert and a blazar component co-exist.
By combining complementary monitoring observations spanning long, medium and short time scales, we have constructed power spectral densities (PSDs) of six Seyfert~1 galaxies. These PSDs span $gtrsim$4 orders of magnitude in temporal frequency, sampling variations on time scales ranging from tens of minutes to over a year. In at least four cases, the PSD shows a break, a significant departure from a power law, typically on time scales of order a few days. This is similar to the behavior of Galactic X-ray binaries (XRBs), lower mass compact systems with breaks on time scales of seconds. NGC 3783 shows tentative evidence for a doubly-broken power law, a feature that until now has only been seen in the (much better-defined) PSDs of low-state XRBs. It is also interesting that (when one previously-observed object is added to make a small sample of seven), an apparently significant correlation is seen between the break time scale $T$ and the putative black hole mass $M_{rm BH}$, while none is seen between break time scale and luminosity. The data are consistent with the linear relation $ T = M_{rm BH}/10^{6.5} Msun$; extrapolation over 6--7 orders of magnitude is in reasonable agreement with XRBs. All of this strengthens the case for a physical similarity between Seyfert~1s and XRBs.