No Arabic abstract
We present a detailed dielectric study of the relaxation effects that occur in several perovskite rare-earth manganites, including the multiferroics TbMnO3 and DyMnO3. We demonstrate that the strong magnetocapacitive effects, observed for electrical fields E||c, are nearly completely governed by magnetic-state induced changes of the relaxation parameters. The multiferroic materials, which undergo a transition into a spiral magnetic state, show qualitatively different relaxation behavior than those compounds transferring into an A-type antiferromagnetic state. We ascribe the relaxations in both cases to the off-center motion of the manganese ions, which in the multiferroic systems also leads to the ferroelectric ordering.
Angle-resolved photoemission spectroscopy data for the bilayer manganite La1.2Sr1.8Mn2O7 show that, upon lowering the temperature below the Curie point, a coherent polaronic metallic groundstate emerges very rapidly with well defined quasiparticles which track remarkably well the electrical conductivity, consistent with macroscopic transport properties. Our data suggest that the mechanism leading to the insulator-to-metal transition in La1.2Sr1.8Mn2O7 can be regarded as a polaron coherence condensation process acting in concert with the Double Exchange interaction.
Raman scattering experiments on CdCr2S4 single crystals show pronounced anomalies in intensity and frequency of optical phonon modes with an onset temperature T*=130 K that coincides with the regime of giant magnetocapacitive effects. A loss of inversion symmetry and Cr off-centering are deduced from the observation of longitudinal optical and formerly infrared active modes for T<T_c=84 K. The intensity anomalies are attributed to the enhanced electronic polarizability of displacements that modulate the Cr-S distance and respective hybridization. Photo doping leads to an annihilation of the symmetry reduction. Our scenario of multiferroic effects is based on the near degeneracy of polar and nonpolar modes and the additional low energy scale due to hybridization.
The gigantic reduction of the electric resistivity under the applied magnetic field, CMR effect, is now widely accepted to appear in the vicinity of the insulator to metal transition of the perovskite manganites. Recently, we have discovered the first order transition from ferromagnetic metal to insulator in $rm La_{0.88}Sr_{0.12}MnO_3$ of the CMR manganite. This phase transition induces the tremendous increase of the resistivity under the external magnetic field just near above the phase transition temperature. We report here fairly detailed results from the systematic experiments including neutron and synchrotron X-ray scattering studies.
We report x-ray scattering studies of broad peaks located at a (0.5 0 0)/(0 0.5 0)-type wavevector in the paramagnetic insulating phases of La_{0.7}Ca_{0.3}MnO_{3} and Pr_{0.7}Ca_{0.3}MnO_{3}. We interpret the scattering in terms of correlated polarons and measure isotropic correlation lengths of 1-2 lattice constants in both samples. Based on the wavevector and correlation lengths, the correlated polarons are found to be consistent with CE-type bipolarons. Differences in behavior between the samples arise as they are cooled through their respective transition temperatures and become ferromagnetic metallic (La_{0.7}Ca_{0.3}MnO_{3}) or charge and orbitally ordered insulating (Pr_{0.7}Ca_{0.3}MnO_{3}). Since the primary difference between the two samples is the trivalent cation size, these results illustrate the robust nature of the correlated polarons to variations in the relative strength of the electron-phonon coupling, and the sensitivity of the low-temperature ground state to such variations.
Roles of Coulomb interaction, orbital degeneracy and Jahn-Teller coupling in double-exchange models are examined for Mn perovskite oxides. We study the undoped Mott insulator as well as metal-insulator transitions by hole doping, and especially strong incoherence of ferromagnetic metal. We derive models where all the spins are fully polarized in two-dimensional planes as in the experimental indications, and investigate their ground-state properties by quantum Monte Carlo method. At half filling where the number of $e_{g}$ electron is one per site on average, the Coulomb interaction opens a Mott gap and induces a staggered orbital ordering. The opening of the Mott gap is, however, substantially slower than the mean-field results if the Jahn-Teller coupling is absent. The synergy between the strong correlation and the Jahn-Teller coupling largely enhances the Mott gap amplitude and reproduces realistic amplitudes and stabilization energy of the Jahn-Teller distortion. Upon doping, the orbital ordering stabilized by the Coulomb interaction is destroyed immediately. Toward the metal-insulator transition, the short-ranged orbital correlation is critically enhanced in metals, which should be related to strong incoherence of charge dynamics observed in experiments. Our model, moreover, exhibits a uniform ordering of $d_{x^{2}-y^{2}}$ orbital in a wide region of doping in agreement with experimental indications.