No Arabic abstract
We compute the corrections, using the tunneling formalisim based on a quantum WKB approach, to the Hawking temperature and Bekenstein-Hawking entropy for the Schwarzschild black hole. The results are related to the trace anomaly and are shown to be equivalent to findings inferred from Hawkings original calculation based on path integrals using zeta function regularization. Finally, exploiting the corrected temperature and periodicity arguments we also find the modification to the original Schwarzschild metric which captures the effect of quantum corrections.
The trace anomaly in six-dimensional space is given by the local terms which have six derivatives of the metric. We find the effective action which is responsible for the anomaly. The result is presented in non-local covariant form and also in the local covariant form which employs two auxiliary scalar fields.
The role of chirality is discussed in unifying the anomaly and the tunneling formalisms for deriving the Hawking effect. Using the chirality condition and starting from the familiar form of the trace anomaly, the chiral (gravitational) anomaly, manifested as a nonconservation of the stress tensor, near the horizon of a black hole, is derived. Solution of this equation yields the stress tensor whose asymptotic infinity limit gives the Hawking flux. Finally, use of the same chirality condition in the tunneling formalism gives the Hawking temperature that is compatible with the flux obtained by anomaly method.
We give a correction to the tunneling probability by taking into account the back reaction effect to the metric of the black hole spacetime. We then show how this gives rise to the modifications in the semiclassical black hole entropy and Hawking temperature. Finally, we reproduce the familiar logarithmic correction to the Bekenstein-Hawking area law.
We study the time evolution of early universe which is developed by a cosmological constant $Lambda_4$ and supersymmetric Yang-Mills (SYM) fields in the Friedmann-Robertson-Walker (FRW) space-time. The renormalized vacuum expectation value of energy-momentum tensor of the SYM theory is obtained in a holographic way. It includes a radiation of the SYM field, parametrized as $C$. The evolution is controlled by this radiation $C$ and the cosmological constant $Lambda_4$. For positive $Lambda_4$, an inflationary solution is obtained at late time. When $C$ is added, the quantum mechanical situation at early time is fairly changed. Here we perform the early time analysis in terms of two different approaches, (i) the Wheeler-DeWitt equation and (ii) Lorentzian path-integral with the Picard-Lefschetz method by introducing an effective action. The results of two methods are compared.
We find an exact coordinate transformation rule from the $AdS_5$ Schwarzschild black hole in the Poincare and the global patch to the Fefferman-Graham coordinate system. Using these results, we evaluate the corresponding holographic stress tensor and trace anomaly of the boundary theory as a function of the radial coordinate. Following the AdS/CFT correspondence, we reinterpret the radial coordinate dependence of the trace anomaly as the Wilsonian renormalization group(RG) flow of the boundary theory.