Do you want to publish a course? Click here

Common Proper Motion Companions to Nearby Stars: Ages and Evolution

112   0   0.0 ( 0 )
 Added by Valeri Makarov
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

A set of 41 nearby stars (closer than 25 pc) is investigated which have very wide binary and common proper motion (CPM) companions at projected separations between 1000 and $200 000$ AU. These companions are identified by astrometric positions and proper motions from the NOMAD catalog. Based mainly on measures of chromospheric and X-ray activity, age estimation is obtained for most of 85 identified companions. Color -- absolute magnitude diagrams are constructed to test if CPM companions are physically related to the primary nearby stars and have the same age. Our carefully selected sample includes three remote white dwarf companions to main sequence stars and two systems (55 Cnc and GJ 777A) of multiple planets and distant stellar companions. Ten new CPM companions, including three of extreme separations, are found. Multiple hierarchical systems are abundant; more than 25% of CPM components are spectroscopic or astrometric binaries or multiples themselves. Two new astrometric binaries are discovered among nearby CPM companions, GJ 264 and HIP 59000 and preliminary orbital solutions are presented. The Hyades kinematic group (or stream) is presented broadly in the sample, but we find few possible thick disk objects and none halo stars. It follows from our investigation that moderately young (age $lesssim 1$ Gyr) thin disk dwarfs are the dominating species in the near CPM systems, in general agreement with the premises of the dynamical survival paradigm. Some of the multiple stellar systems with remote CPM companions probably undergo the dynamical evolution on non-coplanar orbits, known as the Kozai cycle.



rate research

Read More

The multiplicity of early-type stars is still not well established. The derived binary fraction is different for individual star forming regions, suggesting a connection with the age and the environment conditions. The few studies that have investigated this connection do not provide conclusive results. To fill in this gap, we started the first detailed adaptive-optic-assisted imaging survey of early-type field stars to derive their multiplicity in a homogeneous way. The sample has been extracted from the Hipparcos Catalog and consists of 341 BA-type stars within ~300 pc from the Sun. We report the current status of the survey and describe a Monte-Carlo simulation that estimates the completeness of our companion detection.
We report the first results of a multi-epoch search for wide (separations greater than a few tens of AU), low-mass tertiary companions of a volume-limited sample of 118 known spectroscopic binaries within 30 pc of the Sun, using the 2MASS Point Source Catalog and follow-up observations with the KPNO and CTIO 4m telescopes. Note that this sample is not volume-complete but volume-limited, and, thus, there is incompleteness in our reported companion rates. We are sensitive to common proper motion companions with separations from roughly 200 AU to 10,000 AU (~10 -> ~10). From 77 sources followed-up to date, we recover 11 previously known tertiaries, three previously known candidate tertiaries, of which two are spectroscopically confirmed and one rejected, and three new candidates, of which two are confirmed and one rejected. This yields an estimated wide tertiary fraction of 19.5^+5.2%_-3.7%. This observed fraction is consistent with predictions set out in star formation simulations where the fraction of wide, low-mass companions to spectroscopic binaries is >10%, and is roughly twice the wide companion rate of single stars.
[abridged] The severe crowding in the direction of the inner Milky Way suggests that the census of stars within a few tens of parsecs in that direction may not be complete. We search for new nearby objects companions of known high proper motion (HPM) stars located towards the densest regions of the Southern Milky Way where the background contamination presented a major problem to previous works. The common proper motion (PM) method was used--we inspected the area around 167 known HPM (>=200 mas/yr) stars: 67 in the disk and 100 in the bulge. Multi-epoch images were provided by 2MASS and the VISTA Variables in Via Lactea (VVV). The VVV is a new on-going ZYJHKs plus multi-epoch Ks survey of ~562 deg^2 of Milky Ways bulge and inner Southern disk. Seven new co-moving companions were discovered around known HPM stars; six known co-moving pairs were recovered; a pair of stars that was thought to be co-moving was found to have different proper motions; published HPMs of eight stars were not confirmed; last but not least, spectral types ranging from G8V to M5V were derived from new infrared spectroscopy for seventeen stars, members of the co-moving pairs. The seven newly discovered stars constitute ~4% of the nearby HPM star list but this is not a firm limit on the HPM star incompleteness because our starting point--the HPM list assembled from the literature--is incomplete itself, missing many nearby HPM M and L type objects, and it is contaminated with non-HPM stars. We have demonstrated, that the superior sub-arcsec spatial resolution, with respect to previous surveys, allows the VVV to examine further the binary nature nature of known HPM stars. The >=5 yr span of VVV will provide sufficient baseline for finding new HPM stars from VVV data alone.
We report that HAT-P-7 has a common proper motion stellar companion. The companion is located at $sim3.9$ arcsec to the east and estimated as an M5.5V dwarf based on its colors. We also confirm the presence of the third companion, which was first reported by Winn et al. (2009), based on long-term radial velocity measurements. We revisit the migration mechanism of HAT-P-7b given the presence of those companions, and propose sequential Kozai migration as a likely scenario in this system. This scenario may explain the reason for an outlier in the discussion of the spin-orbit alignment timescale for HAT-P-7b by Albrecht et al. (2012).
We report a late M-type, common proper motion companion to a nearby young visual binary HIP 115147 (V368 Cep), separated by 963 arcseconds from the primary K0 dwarf. This optically dim star has been identified as a candidate high proper motion, nearby dwarf LSPM J2322+7847 by L{e}pine in 2005. The wide companion is one of the latest post-T Tauri low mass stars found within 20 pc. We obtain a trigonometric parallax of $51.6pm0.8$ mas, in good agreement with the Hipparcos parallax of the primary star ($50.7pm0.6$ mas). Our $BVRI$ photometric data and near-infrared data from 2MASS are consistent with LSPM J2322+7847 being brighter by 1 magnitude in $K_s$ than field M dwarfs at $V-K_s=6.66$, which indicates its pre-main sequence status. We conclude that the most likely age of the primary HIP 115147 and its 11-arcsecond companion HIP 115147B is 20-50 Myr. The primary appears to be older than its close analog PZ Tel (age 12-20 Myr) and members of the TWA association (7 Myr).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا