Do you want to publish a course? Click here

Variational calculations for K-few-nucleon systems

99   0   0.0 ( 0 )
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

Deeply bound KNN, KNNN and KNNNN states are discussed. The effective force exerted by the K meson on the nucleons is calculated with static nucleons. Next the binding energies are obtained by solving the Schrodinger equation or by variational calculations. The dominant attraction comes from the S-wave Lambda(1405) and an additional contribution is due to Sigma(1385). The latter state is formed at the nuclear peripheries and absorbs a sizable piece of the binding energy. It also generates new branches of quasi-bound states. The lowest binding energies based on a phenomenological KN input fall into the 40-80 MeV range for KNN, 90-150 MeV for KNNN and 120-220 MeV for K-alpha systems. The uncertainties are due to unknown KN interactions in the distant subthreshold energy region.



rate research

Read More

Using realistic wave functions, the proton-neutron and proton-proton momentum distributions in $^3He$ and $^4He$ are calculated as a function of the relative, $k_{rel}$, and center of mass, $K_{CM}$, momenta, and the angle between them. For large values of ${k}_{rel}gtrsim 2,,fm^{-1}$ and small values of ${K}_{CM} lesssim 1.0,,fm^{-1}$, both distributions are angle independent and decrease with increasing $K_{CM}$, with the $pn$ distribution factorizing into the deuteron momentum distribution times a rapidly decreasing function of $K_{CM}$, in agreement with the two-nucleon (2N) short range correlation (SRC) picture. When $K_{CM}$ and $k_{rel}$ are both large, the distributions exhibit a strong angle dependence, which is evidence of three-nucleon (3N) SRC. The predicted center-of-mass and angular dependence of 2N and 3N SRC should be observable in two-nucleon knock-out processes $A(e,epN)X$.
129 - Vadim Baru 2009
We report about the recent results for s- and p-wave pion production in NN -> NNpi within effective field theory and discuss how the charge symmetry breaking in pn -> d pi^0 can be used to extract the strong contribution to the neutron-proton mass difference.
471 - S. Binder , A. Calci , E. Epelbaum 2015
We apply improved nucleon-nucleon potentials up to fifth order in chiral effective field theory, along with a new analysis of the theoretical truncation errors, to study nucleon-deuteron (Nd) scattering and selected low-energy observables in 3H, 4He, and 6Li. Calculations beyond second order differ from experiment well outside the range of quantified uncertainties, providing truly unambiguous evidence for missing three-nucleon forces within the employed framework. The sizes of the required three-nucleon force contributions agree well with expectations based on Weinbergs power counting. We identify the energy range in elastic Nd scattering best suited to study three-nucleon force effects and estimate the achievable accuracy of theoretical predictions for various observables.
117 - F. A. Baroncini 2007
We present a preliminary calculation of the electromagnetic form factors of $^3$He and $^3$H, performed within the Light-Front Hamiltonian Dynamics. Relativistic effects show their relevance even at the static limit, increasing at higher values of momentum transfer, as expected.
Inclusive electromagnetic reactions in few-nucleon systems are studied basing on accurate three- and four-body calculations. The longitudinal 4He(e,e) response function obtained at qle 600 MeV/c completely agrees with experiment. The exact 4He spectral function obtained in a semirealistic potential model is presented, and the accuracy of the quasielastic response calculated with its help is assessed, as well as the accuracy of some simpler approximations for the response. The photodisintegration cross section of 3He obtained with the realistic AV14 NN force plus UrbanaVIII NNN force agrees with experiment. It is shown that this cross section is very sensitive to underlying nuclear dynamics in the E_gammasimeq 70-100 MeV region. In particular, the NNN nuclear force clearly manifests itself in this region.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا