Do you want to publish a course? Click here

Spinor fields in Causal Set Theory

112   0   0.0 ( 0 )
 Added by Roman Sverdlov
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The goal of this paper is to define fermionic fields on causal set. This is done by the use of holonomies to define vierbines, and then defining spinor fields by taking advantage of the leftover degrees of freedom of holonomies plus additional scalar fields. Grassmann nature is being enforced by allowing measure to take both positive and negative values, and also by introducing a vector space to have both commutting dot product and anticommutting wedge product.



rate research

Read More

121 - Roman Sverdlov 2008
This is the second paper in a series on the dynamics of matter fields in the causal set approach to quantum gravity. We start with the usual expression for the Lagrangian of a charged scalar field coupled to a SU(n) Yang-Mills field, in which the gauge field is represented by a connection form, and show how to write it in terms of holonomies between pairs of points, causal relations, and volumes or timelike distances, all of which have a natural correspondence in the causal set context. In the second part of the paper we present an alternative model, in which the gauge field appears as the result of a procedure inspired by the Kaluza-Klein reduction in continuum field theory, and the dynamics can be derived simply using the gravitational Lagrangian of the theory.
The goal of this paper is to propose an approach to the formulation of dynamics for causal sets and coupled matter fields. We start from the continuum version of the action for a Klein-Gordon field coupled to gravity, and rewrite it first using quantities that have a direct correspondent in the case of a causal set, namely volumes, causal relations, and timelike lengths, as variables to describe the geometry. In this step, the local Lagrangian density $L(f;x)$ for a set of fields $f$ is recast into a quasilocal expression $L_0(f;p,q)$ that depends on pairs of causally related points $p prec q$ and is a function of the values of $f$ in the Alexandrov set defined by those points, and whose limit as $p$ and $q$ approach a common point $x$ is $L(f;x)$. We then describe how to discretize $L_0(f;p,q)$, and use it to define a discrete action.
148 - Roman Sverdlov 2021
In this paper we will define a Lagrangian for scalar and gauge fields on causal sets, based on the selection of an Alexandrov set in which the variations of appropriate expressions in terms of either the scalar field or the gauge field holonomies around suitable loops take on the least value. For these fields, we will find that the values of the variations of these expressions define Lagrangians in covariant form.
91 - Roman Sverdlov 2018
In this paper we address the non-locality issue of quantum field theory on a causal set by rewriting it in such a way that avoids the use of dAlembertian. We do that by replacing scalar field over points with scalar field over edges, where the edges are taken to be very long rather than very short. In particular, they are much longer than the size of the laboratory. Due to their large length, we can single out the edges that are almost parallel to each other, and then use directional derivatives in the direction of those edges (as opposed to dAlembertian) along with a constraint that the derivatives are small in the direction perpendicular to those edges, in order to come up with a plane wave. The scalar field is thought to reside at the future end of those edges, which renders the seemingly nonlocal effects of their large length as physically irrelevant. After that we add by hand the interaction of those plane waves that would amount to 4-vertex coupling of plane waves.
92 - Roman Sverdlov 2008
The goal of this paper is to present the way to define fermionic fields and their Lagrangians in terms of three orthogonal vector fields of norm 1 together with two real valued scalar fields. This paper is based on a toy model where there are no Grassmann variables.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا