Do you want to publish a course? Click here

Hawking radiation via Anomaly and Tunneling method from Unruhs and Canonical acoustic black hole

105   0   0.0 ( 0 )
 Added by Joel Saavedra
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Hawking radiation from Unruhs and Canonical acoustic black hole is considered from viewpoint of anomaly cancellation method developed by Robinson and Wilczek. Thus, the physics near the horizon can be described using an infinite collection of massless two-dimensional scalar fields in the background of a dilaton and the gravitational anomaly is canceled by the flux of a 1 + 1 dimensional blackbody at the Hawking temperature of the space-time. Consequently, by this method, we can get the Hawkings temperature for Canonical and Unruhs acoustic black hole.

rate research

Read More

Stimulated emission by black holes is discussed in light of the analogue gravity program. We first consider initial quantum states containing a definite number of particles, and then we take into account the case where the initial state is a coherent state. The latter case is particularly significant in the case where Hawking radiation is studied in dielectric black holes, and the emission is stimulated by a laser probe. We are particularly interested in the case of the electromagnetic field, for which stimulated radiation is calculated too.
We revisit the tunneling picture for the Hawking effect in light of the charged Nariai manifold, because this general relativistic solution, which displays two horizons, provides the bonus to allow the knowledge of exact solutions of the field equations. We first perform a revisitation of the tunneling ansatz in the framework of particle creation in external fields a la Nikishov, which corroborates the interpretation of the semiclassical emission rate Gamma as the conditional probability rate for the creation of a couple of particles from the vacuum. Then, particle creation associated with the Hawking effect on the Nariai manifold is calculated in two ways. On the one hand, we apply the Hamilton Jacobi formalism for tunneling, in the case of a charged scalar field on the given background. On the other hand, the knowledge of the exact solutions for the Klein Gordon equations on Nariai manifold, and their analytic properties on the extended manifold, allow us a direct computation of the flux of particles leaving the horizon, and, as a consequence, we obtain a further corroboration of the semiclassical tunneling picture from the side of S-matrix formalism.
Arising out of a Non-local non-relativistic BEC, we present an Analogue gravity model upto $mathcal{O}(xi^{2})$ accuracy in the presence of the quantum potential term for a canonical acoustic BH in $(3+1)$-d spacetime where the series solution of the free minimally coupled KG equation for the large length scale massive scalar modes is derived. We systematically address the issues of the presence of the quantum potential term being the root cause of a UV-IR coupling between short wavelength `primary modes which are supposedly Hawking radiated through the sonic horizon and the large wavelength `secondary modes. In the quantum gravity experiments of analogue Hawking radiation in the laboratory, this UV-IR coupling is inevitable and one can not get rid of these large wavelength excitations which would grow over space by gaining energy from the short wavelength Hawking radiated modes. We identify the characteristic feature in the growth rate(s) that would distinguish these primary and secondary modes.
We discuss Hawking radiation from a five-dimensional squashed Kaluza-Klein black hole on the basis of the tunneling mechanism. A simple manner, which was recently suggested by Umetsu, is possible to extend the original derivation by Parikh and Wilczek to various black holes. That is, we use the two-dimensional effective metric, which is obtained by the dimensional reduction near the horizon, as the background metric. By using same manner, we derive both the desired result of the Hawking temperature and the effect of the back reaction associated with the radiation in the squashed Kaluza-Klein black hole background.
136 - P. D. Nation , M. P. Blencowe , 2010
We propose that the Hawking radiation energy and entropy flow rates from a black hole can be viewed as a one-dimensional (1D), non-equilibrium Landauer transport process. Support for this viewpoint comes from previous calculations invoking conformal symmetry in the near-horizon region, which give radiation rates that are identical to those of a single 1D quantum channel connected to a thermal reservoir at the Hawking temperature. The Landauer approach shows in a direct way the particle statistics independence of the energy and entropy fluxes of a black hole radiating into vacuum, as well as one near thermal equilibrium with its environment. As an application of the Landauer approach, we show that Hawking radiation gives a net entropy production that is 50% larger than that obtained assuming standard three-dimensional emission into vacuum.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا