Do you want to publish a course? Click here

Vacuum static compactified wormholes in eight-dimensional Lovelock theory

159   0   0.0 ( 0 )
 Added by Alex Giacomini
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper new exact solutions in eight dimensional Lovelock theory will be presented. These solutions are vacuum static wormhole, black hole and generalized Bertotti-Robinson space-times with nontrivial torsion. All the solutions have a cross product structure of the type $M_{5}times Sigma_{3} $ where $M_{5}$ is a five dimensional manifold and $Sigma_{3}$ a compact constant curvature manifold. The wormhole is the first example of a smooth vacuum static Lovelock wormhole which is neither Chern-Simons nor Born-Infeld. It will be also discussed how the presence of torsion affects the navigableness of the wormhole for scalar and spinning particles. It will be shown that the wormhole with torsion may act as geometrical filter: a very large torsion may increase the traversability for scalars while acting as a polarizator on spinning particles. This may have interesting phenomenological consequences.



rate research

Read More

We investigate topological effects of a cosmic string and compactification of a spatial dimension on the vacuum expectation value (VEV) of the energy-momentum tensor for a fermionic field in (4+1)-dimensional locally AdS spacetime. The contribution induced by the compactification is explicitly extracted by using the Abel-Plana summation formula. The mean energy-momentum tensor is diagonal and the vacuum stresses along the direction perpendicular to the AdS boundary and along the cosmic string are equal to the energy density. All the components are even periodic functions of the magnetic fluxes inside the string core and enclosed by compact dimension, with the period equal to the flux quantum. The vacuum energy density can be either positive or negative, depending on the values of the parameters and the distance from the string. The topological contributions in the VEV of the energy-momentum tensor vanish on the AdS boundary. Near the string the effects of compactification and gravitational field are weak and the leading term in the asymptotic expansion coincides with the corresponding VEV in (4+1)-dimensional Minkowski spacetime. At large distances, the decay of the cosmic string induced contribution in the vacuum energy-momentum tensor, as a function of the proper distance from the string, follows a power law. For a cosmic string in the Minkowski bulk and for massive fields the corresponding fall off is exponential. Within the framework of the AdS/CFT correspondence, the geometry for conformal field theory on the AdS boundary corresponds to the standard cosmic string in (3+1)-dimensional Minkowski spacetime compactified along its axis.
In the present paper, we study the vacuum bosonic currents in the geometry of a compactified cosmic string in the background of the de Sitter spacetime. The currents are induced by magnetic fluxes, one running along the cosmic string and another one enclosed by the compact dimension. To develop the analysis, we obtain the complete set of normalized bosonic wave-functions obeying a quasiperiodicity condition. In this context, we calculate the azimuthal and axial current densities and we show that these quantities are explicitly decomposed into two contributions: one originating from the geometry of a straight uncompactified cosmic string and the other induced by the compactification. We also compare the results with the literature in the case of a massive fermionic field in the same geometry.
We study the fermionic condensate (FC) and the vacuum expectation value (VEV) of the energy-momentum tensor for a massive spinor field in the de Sitter (dS) spacetime including an ideal cosmic string. In addition, spatial dimension along the string is compactified to a circle of length $L$. The fermionic field is assumed to obey quasi-periodic condition along the $z$-axis. There are also magnetic fluxes running along the cosmic string and enclosed by the compact dimension. Both, the FC and the VEV of the energy-momentum tensor, are decomposed into two parts: one induced by the cosmic string in dS spacetime considering the absence of the compactification, and another one induced by the compactification. In particular, we show that the FC vanishes for a massless fermionic field.
The vacuum expectation value of the current density for a charged scalar field is investigated in Rindler spacetime with a part of spatial dimensions compactified to a torus. It is assumed that the field is prepared in the Fulling-Rindler vacuum state. For general values of the phases in the periodicity conditions and the lengths of compact dimensions, the expressions are provided for the Hadamard function and vacuum currents. The current density along compact dimensions is a periodic function of the magnetic flux enclosed by those dimensions and vanishes on the Rindler horizon. The obtained results are compared with the corresponding currents in the Minkowski vacuum. The near-horizon and large-distance asymptotics are discussed for the vacuum currents around cylindrical black holes. In the near-horizon approximation the lengths of compact dimensions are determined by the horizon radius. At large distances from the horizon the geometry is approximated by a locally anti-de Sitter spacetime with toroidally compact dimensions and the lengths of compact dimensions are determined by negative cosmological constant.
We show that the four-dimensional Lovelock-Cartan action can be derived from a massless gauge theory for the $SO(1,3)$ group with an additional BRST trivial part. The model is originally composed by a topological sector and a BRST exact piece and has no explicit dependence on the metric, the vierbein or a mass parameter. The vierbein is introduced together with a mass parameter through some BRST trivial constraints. The effect of the constraints is to identify the vierbein with some of the additional fields, transforming the original action into the Lovelock-Cartan one. In this scenario, the mass parameter is identified with Newtons constant while the gauge field is identified with the spin-connection. The symmetries of the model are also explored. Moreover, the extension of the model to a quantum version is qualitatively discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا