Do you want to publish a course? Click here

Eigenvalue Asymptotics in a Twisted Waveguide

387   0   0.0 ( 0 )
 Added by Georgi Raikov
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We consider a twisted quantum wave guide, and are interested in the spectral analysis of the associated Dirichlet Laplacian H. We show that if the derivative of rotation angle decays slowly enough at infinity, then there is an infinite sequence of discrete eigenvalues lying below the infimum of the essential spectrum of H, and obtain the main asymptotic term of this sequence.



rate research

Read More

We consider the Dirichlet Laplacian in a three-dimensional waveguide that is a small deformation of a periodically twisted tube. The deformation is given by a bending and an additional twisting of the tube, both parametrized by a coupling constant $delta$. We expand the resolvent of the perturbed operator near the bottom of its essential spectrum and we show the existence of exactly one resonance, in the asymptotic regime of $delta$ small. We are able to perform the asymptotic expansion of the resonance in $delta$, which in particular permits us to give a quantitative geometric criterion for the existence of a discrete eigenvalue below the essential spectrum. In the particular case of perturbations of straight tubes, we are able to show the existence of resonances not only near the bottom of the essential spectrum but near each threshold in the spectrum. We also obtain the asymptotic behavior of the resonances in this situation, which is generically different from the first case.
90 - Philippe Briet 2016
This paper is concerned with the study of theexistence/non-existence of the discrete spectrum of the Laplaceoperator on a domain of $mathbb R ^3$ which consists in atwisted tube. This operator is defined by means of mixed boundaryconditions. Here we impose Neumann Boundary conditions on abounded open subset of the boundary of the domain (the Neumannwindow) and Dirichlet boundary conditions elsewhere.
129 - Nelia Charalambous , Zhiqin Lu , 2020
We demonstrate lower bounds for the eigenvalues of compact Bakry-Emery manifolds with and without boundary. The lower bounds for the first eigenvalue rely on a generalised maximum principle which allows gradient estimates in the Riemannian setting to be directly applied to the Bakry-Emery setting. Lower bounds for all eigenvalues are demonstrated using heat kernel estimates and a suitable Sobolev inequality.
Let $Lambdasubset mathbb{R}^d$ be a domain consisting of several cylinders attached to a bounded center. One says that $Lambda$ admits a threshold resonance if there exists a non-trivial bounded function $u$ solving $-Delta u= u u$ in $Lambda$ and vanishing at the boundary, where $ u$ is the bottom of the essential spectrum of the Dirichlet Laplacian in $Lambda$. We derive a sufficient condition for the absence of threshold resonances in terms of the Laplacian eigenvalues on the center. The proof is elementary and is based on the min-max principle. Some two- and three-dimensional examples and applications to the study of Laplacians on thin networks are discussed.
472 - Pablo Miranda 2015
We consider the discrete spectrum of the two-dimensional Hamiltonian $H=H_0+V$, where $H_0$ is a Schrodinger operator with a non-constant magnetic field $B$ that depends only on one of the spatial variables, and $V$ is an electric potential that decays at infinity. We study the accumulation rate of the eigenvalues of H in the gaps of its essential spectrum. First, under some general conditions on $B$ and $V$, we introduce effective Hamiltonians that govern the main asymptotic term of the eigenvalue counting function. Further, we use the effective Hamiltonians to find the asymptotic behavior of the eigenvalues in the case where the potential V is a power-like decaying function and in the case where it is a compactly supported function, showing a semiclassical behavior of the eigenvalues in the first case and a non-semiclassical behavior in the second one. We also provide a criterion for the finiteness of the number of eigenvalues in the gaps of the essential spectrum of $H$
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا