Tight--binding description of the quasiparticle dispersion of graphite and few--layer graphene


Abstract in English

A universal set of third--nearest neighbour tight--binding (TB) parameters is presented for calculation of the quasiparticle (QP) dispersion of $N$ stacked $sp^2$ graphene layers ($N=1... infty$) with $AB$ stacking sequence. The QP bands are strongly renormalized by electron--electron interactions which results in a 20% increase of the nearest neighbour in--plane and out--of--plane TB parameters when compared to band structure from density functional theory. With the new set of TB parameters we determine the Fermi surface and evaluate exciton energies, charge carrier plasmon frequencies and the conductivities which are relevant for recent angle--resolved photoemission, optical, electron energy loss and transport measurements. A comparision of these quantitities to experiments yields an excellent agreement. Furthermore we discuss the transition from few layer graphene to graphite and a semimetal to metal transition in a TB framework.

Download