No Arabic abstract
An AC electric field applied to a donor-bound electron in a semiconductor modulates the orbital character of its wave function, which affects the electrons spin dynamics via the spin-orbit interaction. Numerical calculations of the spin dynamics of a hydrogenic donor (Si) embedded in GaAs, using a real-space multi-band k.p formalism, show the high symmetry of the hydrogenic donor state results in strongly nonlinear dependences of the electronic g tensor on applied fields. A nontrivial consequence is that the most rapid Rabi oscillations occur for electric fields modulated at a subharmonic of the Larmor frequency.
Heat is detrimental for the operation of quantum systems, yet it fundamentally behaves according to quantum mechanics, being phase coherent and universally quantum-limited regardless of its carriers. Due to their robustness, superconducting circuits integrating dissipative elements are ideal candidates to emulate many-body phenomena in quantum heat transport, hitherto scarcely explored experimentally. However, their ability to tackle the underlying full physical richness is severely hindered by the exclusive use of a magnetic flux as a control parameter and requires complementary approaches. Here, we introduce a dual, magnetic field-free circuit where charge quantization in a superconducting island enables thorough electric field control. We thus tune the thermal conductance, close to its quantum limit, of a single photonic channel between two mesoscopic reservoirs. We observe heat flow oscillations originating from the competition between Cooper-pair tunnelling and Coulomb repulsion in the island, well captured by a simple model. Our results demonstrate that the duality between charge and flux extends to heat transport, with promising applications in thermal management of quantum devices.
Hybrid systems coupling quantum spin defects (QSD) and magnons can enable unique spintronic device functionalities and probes for magnetism. Here, we add electric field control of magnon-QSD coupling to such systems by integrating ferromagnet-ferroelectric multiferroic with nitrogen-vacancy (NV) center spins. Combining quantum relaxometry with ferromagnetic resonance measurements and analytical modeling, we reveal that the observed electric-field tuning results from ferroelectric polarization control of the magnon-generated fields at the NV. Exploiting the demonstrated control, we also propose magnon-enhanced hybrid electric field sensors with improved sensitivity.
The spin field effect transistor envisioned by Datta and Das opens a gateway to spin information processing. Although the coherent manipulation of electron spins in semiconductors is now possible, the realization of a functional spin field effect transistor for information processing has yet to be achieved, owing to several fundamental challenges such as the low spin-injection efficiency due to resistance mismatch, spin relaxation, and the spread of spin precession angles. Alternative spin transistor designs have therefore been proposed, but these differ from the field effect transistor concept and require the use of optical or magnetic elements, which pose difficulties for the incorporation into integrated circuits. Here, we present an all-electric and all-semiconductor spin field effect transistor, in which these obstacles are overcome by employing two quantum point contacts as spin injectors and detectors. Distinct engineering architectures of spin-orbit coupling are exploited for the quantum point contacts and the central semiconductor channel to achieve complete control of the electron spins -- spin injection, manipulation, and detection -- in a purely electrical manner. Such a device is compatible with large-scale integration and hold promise for future spintronic devices for information processing.
The polar covalent bond between a single Au atom terminating the apex of an atomic force microscope tip and a C atom of graphene on SiC(0001) is exposed to an external electric field. For one field orientation the Au-C bond is strong enough to sustain the mechanical load of partially detached graphene, whilst for the opposite orientation the bond breaks easily. Calculations based on density functional theory and nonequilibrium Greens function methods support the experimental observations by unveiling bond forces that reflect the polar character of the bond. Field-induced charge transfer between the atomic orbitals modifies the polarity of the different electronegative reaction partners and the Au-C bond strength.
Our world is composed of various materials with different structures, where spin structures have been playing a pivotal role in spintronic devices of the contemporary information technology. Apart from conventional collinear spin materials such as collinear ferromagnets and collinear antiferromagnetically coupled materials, noncollinear spintronic materials have emerged as hot spots of research attention owing to exotic physical phenomena. In this Review, we firstly introduce two types noncollinear spin structures, i.e., the chiral spin structure that yields real-space Berry phases and the coplanar noncollinear spin structure that could generate momentum-space Berry phases, and then move to relevant novel physical phenomena including topological Hall effect, anomalous Hall effect, multiferroic, Weyl fermions, spin-polarized current, and spin Hall effect without spin-orbit coupling in these noncollinear spin systems. Afterwards, we summarize and elaborate the electric-field control of the noncollinear spin structure and related physical effects, which could enable ultralow power spintronic devices in future. In the final outlook part, we emphasize the importance and possible routes for experimentally detecting the intriguing theoretically predicted spin-polarized current, verifying the spin Hall effect in the absence of spin-orbit coupling and exploring the anisotropic magnetoresistance and domain-wall-related magnetoresistance effects for noncollinear antiferromagnetic materials.