Do you want to publish a course? Click here

Status of Constraints on Supersymmetry

101   0   0.0 ( 0 )
 Added by Ayres Freitas
 Publication date 2008
  fields
and research's language is English
 Authors A. Freitas




Ask ChatGPT about the research

A short summary of constraints on the parameter space of supersymmetric models is given. Experimental limits from high energy colliders, electroweak precision data, flavor and Higgs physics, and cosmology are considered. The main focus is on the MSSM with conserved R- and CP-parity and minimal flavor violation, but more general scenarios and extended models will also be discussed briefly.



rate research

Read More

227 - Xerxes Tata 2020
The realization that supersymmetry (SUSY), if softly broken at the weak scale, can stabilize the Higgs sector led many authors to explore the role it may play in particle physics. It was widely anticipated that superpartners would reveal themselves once the TeV scale was probed in high energy collisions. Experiments at the LHC have not yet revealed any sign for direct production of superpartners, or for any other physics beyond the Standard Model. This has led to some authors to question whether weak scale SUSY has a role to play in stabilizing the Higgs sector. We show that SUSY models with just the minimal particle content may well be consistent with data and simultaneously serve to stabilize the Higgs sector, if model parameters generally regarded as independent turn out to be appropriately correlated. In our view, it would be premature to ignore this possibility, given that we do not understand the underlying mechanism of SUSY breaking. We advocate using the electroweak scale quantity, $delew$, to determine whether a given SUSY spectrum might arise from a theory with low fine-tuning, even when the parameters correlations mentioned above are present. We find that all such models contain light higgsinos and that this leads to the possibility of new strategies for searching for SUSY. We discuss phenomenological implications of these models for SUSY searches at the LHC and its luminosity and energy upgrades, as well as at future electron-positron colliders. We conclude that natural SUSY, defined as no worse than a part in 30 fine-tuning, will not escape detection at a $pp$ collider operating at 27~TeV and an integrated luminosity of 15~ab$^{-1}$, or at an electron-positron collider with a centre-of-mass energy of 600~GeV.
We demonstrate that megaton-mass neutrino telescopes are able to observe the signal from long-lived particles beyond the Standard Model, in particular the stau, the supersymmetric partner of the tau lepton. Its signature is an excess of charged particle tracks with horizontal arrival directions and energy deposits between 0.1 and 1 TeV inside the detector. We exploit this previously-overlooked signature to search for stau particles in the publicly available IceCube data. The data shows no evidence of physics beyond the Standard Model. We derive a new lower limit on the stau mass of $320$ GeV (95% C.L.) and estimate that this new approach, when applied to the full data set available to the IceCube collaboration, will reach world-leading sensitivity to the stau mass ($m_{tilde{tau}}=450,mathrm{GeV}$).
231 - M. Baak , M. Goebel , J. Haller 2011
We present an update of the Standard Model fit to electroweak precision data. We include newest experimental results on the top quark mass, the W mass and width, and the Higgs boson mass bounds from LEP, Tevatron and the LHC. We also include a new determination of the electromagnetic coupling strength at the Z pole. We find for the Higgs boson mass (91 +30 -23) GeV and (120 +12 -5) GeV when not including and including the direct Higgs searches, respectively. From the latter fit we indirectly determine the W mass to be (80.360 +0.014 -0.013) GeV. We exploit the data to determine experimental constraints on the oblique vacuum polarisation parameters, and confront these with predictions from the Standard Model (SM) and selected SM extensions. By fitting the oblique parameters to the electroweak data we derive allowed regions in the BSM parameter spaces. We revisit and consistently update these constraints for a fourth fourth fermion generation, two Higgs doublet, inert Higgs and littlest Higgs models, models with large, universal or warped extra dimensions and technicolour. In most of the models studied a heavy Higgs boson can be made compatible with the electroweak precision data.
Supersymmetry (SUSY) is a complete and renormalisable candidate for an extension of the Standard Model. At an energy scale not too far above the electroweak scale it would solve the hierarchy problem of the SM Higgs boson, dynamically explain electroweak symmetry breaking, and provide a dark-matter candidate. Since it doubles the Standard Model degrees of freedom, SUSY predicts a large number of additional particles, whose properties and effects on precision measurements can be explicitly predicted in a given SUSY model. In this review the motivation for SUSY is outlined, the various searches strategies for SUSY particles at the LHC are described, and the status of SUSY in global analyses after the LHC Run 1 is summarized.
Positivity bounds coming from consistency of UV scattering amplitudes are in general insufficient to prove the weak gravity conjecture for theories beyond Einstein-Maxwell. Additional ingredients about the UV may be necessary to exclude those regions of parameter space which are naively in conflict with the predictions of the weak gravity conjecture. In this paper we explore the consequences of imposing additional symmetries inherited from the UV theory on higher-derivative operators for Einstein-Maxwell-dilaton-axion theory. Using black hole thermodynamics, for a preserved SL($2,mathbb{R}$) symmetry we find that the weak gravity conjecture then does follow from positivity bounds. For a preserved O($d,d;mathbb{R}$) symmetry we find a simple condition on the two Wilson coefficients which ensures the positivity of corrections to the charge-to-mass ratio and that follows from the null energy condition alone. We find that imposing supersymmetry on top of either of these symmetries gives corrections which vanish identically, as expected for BPS states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا